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We combine a novel boronate trap for F- with a near-infrared fluorophore into a single molecule. Attachment to
targeting ligands enables localization by positron emission tomography (PET) and near-infrared fluorescence (NIRF).
Our first application of this generic tag is to label Lymphoseek (tilmanocept), an agent designed for receptor-
specific sentinel lymph node (SLN) mapping. The new conjugate incorporates 18F- in a single, aqueous step,
targets mouse SLN rapidly (1 h) with reduced distal lymph node accumulation, permits PET or scintigraphic
imaging of SLN, and enables NIRF-guided excision and histological verification even after 18F decay. This
embodiment is superior to current SLN mapping agents such as nontargeted [99mTc]sulfur colloids and Isosulfan
Blue, as well as the phase III targeted ligand [99mTc]SPECT Lymphoseek counterpart, species that are visible by
SPECT or visible absorbance separately. Facile incorporation of 18F into a NIRF probe should promote many
synergistic PET and NIRF combinations.

INTRODUCTION

Different molecular imaging techniques have complementary
advantages and disadvantages in spatial and temporal resolution,
depth penetration, sensitivity, and cost (1). A powerful way to
combine synergistic advantages is to construct synthetic probes
that can be imaged by two or more modalities (2-4). Radiotrac-
ers and near-infrared fluorescence (NIRF) are particularly
suitable combinations because both are sufficiently sensitive to
enable direct visualization at receptor binding concentrations
(nanomolar to picomolar). In contrast, magnetic resonance
imaging (MRI) and X-ray contrast tomography require much
higher elemental concentrations of the probe (1). The excellent
penetration of γ-ray photons in positron emission tomography
(PET) allows quantitative detection regardless of depth, making
this technique ideal for whole-body scanning. NIRF offers much
higher spatial and temporal resolution and cheaper instrumenta-
tion, but it is largely limited to superficial targets, making it
ideal for image-guided surgery and histology.

Multimodality PET/optical probes under development cur-
rently include 18F/quantum dot (QD) (5), 18F/nanoparticle (6),
bis(thiosemicarbazonato) 64Cu chelates (3, 7), and 64Cu/cypate
(4) conjugates. PET bioconjugate radiochemistry is often limited
to the physically more common radionuclides 64Cu (t1/2 ) 762
min), 68Ga (t1/2 ) 68 min), and 18F (t1/2 ) 110 min), because
they are easily manipulated and possess nuclear half-lives
sufficiently long enough for chemical isotope manipulation and
in vivo distribution. Unfortunately, each of these PET nuclides
presents intrinsic complications. For example, 64Cu (3, 4, 8) and
68Ga (9, 10) chelates can suffer from impure isotope production
as well as lowered specific activity because of impure isotope
decay (11) and large chelation moieties that may alter ligand
biodistribution and may also suffer from in vivo metal ion
transchelation (12). Alternatively, traditional 18F labeling
methods (5, 13-17) relying on C-F bond formation are water-

sensitive, multistep processes that often require harsh reaction
conditions and long processing times that are poorly suited to
the short half-life of 18F.

To simplify PET chemistry, there has been recent interest in
developing rapid, one-step labeling procedures from shelf-stable
final target precursors with aqueous 18F-, while reducing the
side products and chromatographic purifications associated with
traditional C-18F labelings. Recent silica-based (18-21) and
boron-based (22-24) aqueous 18F capture technology allows
direct preparation of isotopically pure PET compounds that are
cleanly labeled, are easily purified, and have been shown to be
stable in vivo (19, 25). We chose to generate [18F]fluoroborates
because they require less bulky hydrophobic substituents and
potentially triple the F- incorporation stoichiometry and attain-
able specific activity (22-24). A typical preparation of 18F
fluoride has a specific activity of ∼10 Ci/µmol even if no carrier
was deliberately added and therefore contains 170 atoms of 19F
for each atom of 18F (26). Incorporation of three fluorine atoms
triples the probability that at least one will be radioactive. We
combine this boron-based 18F capture technology [t1/2 of B-F
solvolysis ) 5550 ( 1740 min (23)] with a NIR fluorophore to
give a generally conjugatable PET/NIRF multimodality probe
1 (Figure 1A). Our first test of this probe is to help find and
excise sentinel lymph nodes.

The current method for sentinel lymph node mapping in
melanoma and breast cancer involves injection of a combination
of Isosulfan Blue (27) and a 99mTc-labeled colloid radiopharma-
ceutical (28, 29). This pair allows for lymphoscintigraphy and
absorbance-guided intraoperative lymph node excision (30).
With little affinity for the sentinel lymph node, 99mTc-labeled
colloids and Isosulfan Blue will travel past the sentinel node in
a lymph chain restricting the surgeon to a small time-window
within which to perform the mapping procedure. 99mTc-
radiolabeled colloids are large particles that are nonspecifically
trapped within lymphoid tissue. These agents are inefficient at
entering lymph channels and, over time, reach distal lymph
nodes. Distal colloid or dye uptake leads to the surgical removal
of more lymph nodes than necessary, which increases the extent
of the dissection, forces the pathologist to review a greater
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number of lymph nodes, and increases the probability of local
lymphedema, a complication of lymph node resection. An
alternative probe is Lymphoseek (tilmanocept), a mannosylated
16 kDa dextran conjugate, that can be labeled with 99mTc for
SPECT-based imaging (31, 32) and is currently in phase III
clinical trials. It binds with a high affinity to cell-surface lectins
[KD ) 0.12 nM (33)] and was developed specifically for sentinel
lymph node mapping. 99mTc-labeled Lymphoseek has demon-
strated rapid injection site clearance, a low level of distal node
accumulation, a lack of local systemic toxicity, and greater
specific sentinel lymph node uptake than filtered [99mTc]sulfur
colloid (32, 34, 35). A version of Lymphoseek that can be
viewed by both PET and NIRF would combine molecular
targeting, the higher spatial resolution of PET compared to 99mTc
SPECT, and the greater sensitivity and depth penetration of
NIRF compared to the red absorbance of Isosulfan Blue.

Here we apply our generally conjugatable PET/NIRF probe
1 (Figure 1A) to Lymphoseek to enable multimodality-guided
sentinel node visualization and excision. This [18F]boron/optical
multimodality beacon ([18F]BOMB) is differentiated from
traditional C-18F PET labeling strategies (5, 13-17) by its one-
step [18F]fluoride wash-in labeling. [18F]BOMB Lymphoseek 3
(Figure 1B) allows rapid, receptor-specific, positive identification
of the sentinel lymph node in both the NIRF and PET imaging
modes while maintaining little breakthrough to distal lymph
nodes. This success predicts that [18F]BOMB should be gen-
eralizable to other medically relevant targets.

EXPERIMENTAL PROCEDURES

Chemical Synthesis. PET/NIR Dual-Probe Reaction with
Lymphoseek: Synthesis of PET/NIR Lymphoseek Probe 2. The
generally conjugatable NHS ester of PET/NIR probe 1 (4 µmol)
(see the Supporting Information for detailed synthesis) was
added as a CH2Cl2 solution directly into a 1.5 mL glass vial
containing 5.5 mg (0.34 µmol) of Lymphoseek bearing 5.8
amine groups per dextran (Reliable Biopharmaceuticals). This

solution was concentrated to dryness and then resuspended in
100 µL of DMF. This solution was sonicated for 1 h and left to
react for 18 h. The next day, 10 µL of diisopropylethylamine
was added and the reaction mixture was left for an additional
2 h. The reaction mixture was then transferred to a polypropy-
lene centrifuge tube containing 25 mL of CH2Cl2. A pellet of 2
was isolated following centrifugation for 20 min at 3000 rcf,
washed with two more portions of CH2Cl2, dried under high
vacuum, and resuspended in 1 mL of water. This solution was
centrifuged for 2 min at 18000 rcf. Water-soluble 2 was decanted
from the pellet and divided into four aliquots, which were
lyophilized and stored at -78 °C. On the basis of fluorescence
readings, 115.9 nmol of fluorophore-conjugated Lymphoseek
2 was isolated. On the basis of a hexose assay (36), 34-49
nmol of Lymphoseek was isolated as 2. This corresponds to a
10-14% yield of 2 from unconjugated Lymphoseek. The
incorporation ratio of fluorophore to Lymphoseek was 2.36 to
3.41 fluorophores per molecule of Lymphoseek. Spectropho-
tometric constants of a 1.5 µM solution in water were as follows:
absorbance maximum ) 758 nm, ε758 ) 110000 cm-1 M-1 per
fluorophore, excitation maximum ) 757 nm, emission maximum
) 777 nm, and quantum yield ) 0.026.

Radiochemistry. 18F-Labeled Lymphoseek 3. A 300-500 µL
aqueous solution containing 100 mCi of 18F- was transferred
via syringe to a 10 mL glass vial containing 0.4 µL of 0.05 M
KHF2 (40 nmol) fluoride carrier. Note that acidic solutions of
H18F are volatile and radioactive, and therefore, the following
procedures should be performed in a vented hot cell or a fume
hood with radiation shielding. This sample was heated to dryness
at 140 °C under a nitrogen flow. The clear dry solid was
resuspended in 5 µL of a 0.25 M HCl/25% MeOH/75% H2O
solution. This solution, containing 30 mCi, was transferred to
a 600 µL microcentrifuge tube containing 10.6 nmol of
lyophilized 2. This volume was sufficient to completely solu-
bilize 3 and was reacted at 40 °C for 1 h. Following reaction,

Figure 1. (A) Structure of the 18F boron trap/heptamethine cyanine (C7-Cy) PET/NIR probe, [18F]BOMB 1, activated as an NHS ester for general
bioconjugation. The boron-based 18F trap is colored red, while the NIR fluorophore is colored green. (B) Structure of PET/NIR dual probe Lymphoseek
(DTPA-mannosyl-dextran) 2 and the aqueous 18F labeling scheme used to generate 18F-labeled [18F]BOMB Lymphoseek 3. (C) Excitation (blue)
and emission (red) spectra of an aqueous solution of [18F]PET/NIR-Lymphoseek 3 (�f ) 0.027, excitation maximum ) 755 nm, emission maximum
) 772 nm, 1.5 µM Lymphoseek solution in water). The amine (NN), mannose (NM), and DTPA (ND) densities on Lymphoseek are 5.8, 16.5, and
4.2 mol/dextran, respectively. The average preconjugation molecular weight of Lymphoseek is 16122.
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the reaction was quenched with 40 µL of a 1 M MOPS buffered
solution (pH 7.3).

To remove unreacted [18F]fluoride, 5 µL of 3.0 M KHF2 was
added, and then the entire 45 µL was transferred to a Micro
Bio Spin 6 column [molecular weight cutoff of 6000 (Bio-Rad)]
buffered with 10 mM Tris (pH 7.4) and centrifuged without
added eluant for 4 min at 1000 rcf. To the 40 µL of eluant was
added an additional 5 µL of 3.0 M KHF2 (30 µmol) to prevent
the nonspecific elution of [18F]fluoride, and the solution was
immediately centrifuged. This described spin column purification
was repeated three more times with a fresh spin column each
time. Bio-Rad P-6 columns quantitatively remove small MW
organic molecule impurities (see the Supporting Information)
and 93% of [18F]fluoride per column (99.998% of all [18F]fluo-
ride over four columns). Chromatography took 30 min total,
and the final pH of the 60 µL of Tris-buffered, eluted solution
was 7-8. Fluorescence showed that 6.0 nmol of 18F-labeled
PET/NIRF Lymphoseek 3 was eluted from the spin columns
90 min following 18F- concentration. The volume was 60 µL,
and the activity was 300 µCi [total preparation time (reaction
and purification) of 90 min]. See the Supporting Information
for final analyses.

This purified solution was divided into two 30 µL portions,
each sufficient for 3 × 10 µL, 1.0 nmol injections of Lympho-
seek. To one portion was added 1.0 µL of a 31 mM solution of
unconjugated Lymphoseek to give enough injectate for 3 × 10
µL, 11.0 nmol injections. Injections with specific activities of
0.05 Ci/µmol for 1 nmol Lymphoseek injections and 0.005 Ci/
µmol for 11 nmol Lymphoseek injections were conducted for
15-75 min following synthesis and purification (see the
Supporting Information for specifics).

19F (nonradioactiVe) Labeling of Lymphoseek 3. A 10.6 nmol
quantity of lyophilized 2 was dissolved in a 0.25 M HCl/25%
MeOH/75% H2O solution in a 600 µL Eppendorf tube and left
to react at 40 °C for 1 h. This reaction was quenched and the
solution chromatographed under conditions similar to those
described above for 18F labeling. Spectrophotometric constants
of a 1.5 µM solution of [19F]3 in water were as follows:
absorbance maximum ) 756 nm, ε756 ) 110000 cm-1 M-1 per
fluorophore, excitation maximum ) 755 nm, emission maximum
) 772 nm, and quantum yield ) 0.027 (see the Supporting
Information for HPLC characterization).

In Vivo Experiments. The in vivo procedures in this study
have all been approved by the University of California, San
Diego, Institutional Animal Care and Use Committee. A single
subcutaneous injection of 3 was made into the right rear footpad
of 20-25 g, 6-8-week-old athymic nude mice (Charles River
Laboratories). These mice were anesthetized 20 min prior to
injection with isoflurane, taped to black cardboard, and placed
in pairs on an imaging stage. Six pairs of injections were made.
The injected mice received either a 1 nmol dose or a 11 nmol
dose (10 µL each) of 10 mM Tris-buffered [18F]Lymphoseek 3
(pH 7.3). The distribution of [19F]Lymphoseek 3 proceeded for
1 h and 20 min before the mice were euthanized by isoflurane
overdose followed by cervical dislocation.

Imaging. PET and CT scanning were conducted on a eXplore
Vista PET scanner or eXplore Locus CT scanner from GE
Healthcare. PET acquisition was conducted in a single block
in static emission mode with a 100-700 keV energy window.
All PET scans were 20 min unless specified otherwise. Acquisi-
tion and OSEM PET reconstruction were performed with GE
Explore Vista 3.1/MMKS Image Software. This reconstructed
image was fused with computed tomography (CT) images
processed with GE Medical Systems eXplore Utilities. CT Image
acquisition was performed at 93 µm resolution over 10 min.
PET/CT image fusion was conducted with the open source
program amide 0.9.1.

NIRF imaging was conducted using multiple cameras because
of radioactive licensing regulations. IR image acquisition of the
nonradioactive compositions in Figure 2 was performed on a
Maestro small animal imaging instrument (CRI Inc.) with a 820
nm emission filter and a 710-760 nm excitation wavelength.
Data were collected over a 0.5-20 s exposure. Image processing
was performed with Maestro version 2.0.2 and Photoshop. The
Maestro, used for Figure 2, was the best instrument for real-
time, fluorescence-guided node excision, although a custom
system optimized for real-time intraoperative imaging would
be yet more convenient. The success of sentinel lymph node
excision was 100% as determined by histology with the Maestro.
Because animals containing 18F could not be transported to the
Maestro, NIRF in vivo image acquisition of 18F-labeled
compounds was performed on two systems closer to the hot
cell and PET scanner. The first was an eXplore Optix (ART,
Advanced Research Technologies Inc.) optical imaging system.
This is a point source-detector system with a 750 nm excitation
laser and a 780 nm long pass filter placed before the photo-
multiplier tube for single-photon fluorescence detection. The
regions of interest were raster-scanned in 1.5 mm steps with
laser powers ranging from 200 to 800 µW and signal integration
times ranging from 200 to 1000 ms per point. Image processing
was performed with Optix version 2 and Photoshop. However,
the slow raster scan of the Optix made real-time, image-guided
node excision difficult, so a custom full field system (37) was
employed for faster NIRF imaging of 18F-labeled compounds
(Figure 3C). This system used a pulsed laser tuned to 720 nm
(Mai TaiSpectraPhysics) whose output was passed through an
expansion lens and diffuser for uniform area illumination. Area
detection of the fluorescence intensity was acquired in reflection
mode using a 780 nm fluorescence filter and standard 50 mm
lens (Nikon) mounted to a microchannel plate (Picostar HRI,
La Vision) for signal amplification, which was coupled to an
electron-multiplying CCD camera (Andor) to capture the image.
Subsequent image processing was performed with Image J and
Photoshop. Both the Optix and custom systems can measure
nanosecond decay kinetics to provide extra information about
probe lifetime and depth, but this dimension was not exploited
here.

Lymph Node RemoVal and Dissection. Animals were eutha-
nized by isoflurane overdose or CO2 inhalation followed by
cervical dislocation. After the skin had been removed, fluores-
cent images were taken to improve the visualization of the
positions of the fluorescent lymph nodes. With mice placed in
prone positions, both right and left sets of lymph nodes were
surgically removed in the following order: the left popliteal,
the left lumbar, the right lumbar, and the right popliteal.
Following excision, nodes were weighted, submersed in Optimal
Cutting Temperature (OCT) Compound (Sakura Tissue-Tec #
4585) cryogenic embedding medium, and replaced next to their
mouse of origin within the field of view, approximately half a
centimeter below the surgical site in the corresponding mouse.
In some instances where sentinel node excision was difficult,
fluorescence guidance was utilized to guide surgical removal.

Following imaging, samples of blood (vena cava), liver,
kidney, spleen, the hind feet (right and left), bone (contralateral
femur), and muscle from the contralateral femur were collected.

Histology. Immediately following excision, lymph nodes were
weighed and then coated in OCT Compound to prevent lymph
nodes from becoming dehydrated during PET/CT/NIRF analysis
and overnight scintillation counting. Lymph nodes were frozen
at -80 °C for extended periods of time in this preservative.
Frozen sections (10 µm) of the lymph nodes were imaged under
NIRF conditions on a stereomicroscope (Zeiss, Lumar). Tissue
was stained with hematoxylin and eosin and subsequently
imaged via light microscopy (Zeiss, Axiovert). Images were
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processed using Image J. The fluorescent histology was acquired
using 710/75 nm band-pass excitation and 810/90 nm band-
pass emission filters.

Biodistributions. Tissue and injectate samples of known
dilutions were assayed (Gamma 9000, Beckman Instruments)
for radioactivity using a 400-600 keV energy collection
window.

NonradioactiVe [19F]Lymphoseek 3 Dosing Experiments.
Nonradioactive [19F]Lymphoseek 3 was prepared as described
for its 18F counterpart. This preparation was divided into 10 µL
aliquots of 10 mM Tris (pH 7.3) that contained 1.0 nmol of
19F-labeled Lymphoseek 3 diluted with 2, 10, 29, or 300 nmol
of unlabeled Lymphoseek.

RESULTS

Synthesis and Conjugation of a General PET/NIRF
NHS Probe. We appended a sufficiently electron withdrawing
boronic ester (23) to a heptamethine cyanine, a member of a
class of small-molecule dyes that possess an established safety
record (38, 39). Through chemistry pioneered by the Achilefu
group (40), we modified the inexpensive synthon IR-775
(Sigma-Aldrich) into an N-hydroxysuccinimide (NHS)-activated
pre-PET/NIRF probe 1 (Figure 1A) in three steps with a final
yield of 50.7%. The resulting pre-PET/NIRF probe 1 (Figure
1A) shows long wavelength NIR fluorescence and adequate
quantum yield [excitation maximum ) 755 nm, emission
maximum ) 772 nm, and �f ) 0.027 (Figure 1C)]. It was
conjugated to Lymphoseek in a ratio of two to three molecules

of fluorophore per molecule of Lymphoseek to give precursor
2 (Figure 1B). Self-quenching on 2 or 3 was not observed (see
the Supporting Information).

Nonradioactive Fluorescence-Based Lymphoseek Dos-
ing. Initial staging experiments were conducted for two
purposes: (1) to determine what doses, when injected into the
right rear footpad, would rapidly identify the (sentinel) popliteal
lymph node and minimize flow-through to distal (lumbar) lymph
nodes and (2) to determine if the conjugation of Lymphoseek
to the PET/NIRF probe had altered Lymphoseek’s desired
pharmaceutical properties, especially mannose receptor specific-
ity. These experiments were conducted with nonradioactive
[19F]Lymphoseek 3 and fluorescence equipment alone, minimiz-
ing the use of radioactivity during initial stages of this project.
Lymphoseek boronate 2 (Figure 1B) was converted into
fluoroborate 3, and 1 nmol of this fluorescent material was
diluted with 0, 2, 10, 29, or 300 nmol of unconjugated
Lymphoseek to give 1, 3, 11, 30, or 301 nmol of total
Lymphoseek but identical quantities of fluorophore. These
mixtures were injected into mice (three injections per dose, 15
mice total). After 80 min, the first two lymph nodes that drain
the rear-footpad injection site could be viewed by NIRF (Figure
2A,B).

In 1, 3, 11, and 30 nmol Lymphoseek injections (Figure 3
and panels Bi, A, and Bii of Figure 2, respectively), a high level
of uptake in the sentinel node was observed with limited flow-
through to distal lymph nodes. Injections where 3 had been
diluted with 300 nmol of unlabeled Lymphoseek gave less

Figure 2. Nonradioactive NIRF imaging of [19F]Lymphoseek 3. (A) Typical NIRF imaging experiment of a mouse that had been injected with 1
nmol of [19F]3 diluted with 10 nmol of unconjugated Lymphoseek. The NIRF signal (colored red) is overlaid onto a bright field image (green) of
a mouse. A red arrow indicates clear localization of [19F]Lymphoseek 3 to the sentinel (popliteal) lymph node, while the blue arrow indicates
localization to the distal (lumbar) lymph node. (i) Post-mortem skin-on image in which tissue (skin) notably interferes with the sentinel lymph node
visibility. (ii) Pre-excision image (skin removed) in which the sentinel node visibility is improved and lymph drainage tracks are visible. (iii)
Postoperative image in which the excised lymph nodes have been placed in the field of view. (B) In vivo imaging of [19F]Lymphoseek 3’s mannose
receptor specific activity. Fluorescent [19F]Lymphoseek 3 (1 nmol) was imaged in the presence of 2 (i), 29 (ii), or 300 nmol (iii) of unlabeled
Lymphoseek, a competitor for lymph node mannose binding sites. Note that lymph tracks are clearly visible and that greater accumulation of
fluorescent [19F]Lymphoseek 3 is seen in the sentinel lymph nodes with 3 and 30 nmol injections than with 300 nmol injections because of increased
competition with unlabeled Lymphoseek for sentinel lymph node mannose receptors. (C) Ex vivo imaging of [19F]Lymphoseek 3’s mannose receptor
specific activity. Sentinel lymph nodes were extracted from mice and placed on a bed for analysis. Greater accumulation of fluorescent [19F]Lymphoseek
3 is seen in the sentinel lymph nodes in 3 nmol injections than in 300 nmol injections (signal ratio of 3.5, n ) 3 mice per dose, P ) 0.015 for a
two-tailed test, two-sample equal variance, quantization shown in the Supporting Information).
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fluorescence in the sentinel lymph node of mice because of
competition for SLN mannose receptors (Figure 2Biii,C). Such
saturable binding of [19F]Lymphoseek 3 to a limited number of
SLN mannose receptors (32, 34, 41) suggests that conjugation
to 1 does not alter Lymphoseek’s mannose receptor specificity.
This observation is confirmed quantitatively in separate biodis-
tribution experiments (vide infra).

Image-guided surgical excisions of the SLN were then
conducted and confirmed (Figure 2C). Real-time imaging with
a NIRF camera allows for rapid and simple removal of lymph
nodes, especially because the lymph tracks connecting the nodes
are fully visible (Figure 2Bi,Biii). Notably, lymph tracks in mice
have not been previously observed with [99mTc]Lymphoseek.
The observed lymph tracks connecting injection sites and nodes
should help identify the sentinel node in cases where the
distinctions between distal and sentinel nodes are ambiguous.

Radiochemistry. From NIRF experiments (Figure 2), we
determined that total doses of Lymphoseek of up to 30 nmol
work well in imaging the SLN in mice. Using these doses, we
incorporated different 18F activities into 3 to determine the
optimal level of radioactivity that would provide sufficient signal
to image 1 nmol of Lymphoseek by PET, synthesized on a large
multi-injection scale starting with only 100 mCi of 18F- ion. A
specific activity of 1-50 Ci/mmol at the time of injection proved
to be adequate for imaging 18F-labeled 3 in a 20 min PET scan
1 h after injection.

Size exclusion gel chromatography in spin columns was used
to remove small molecule impurities and free [18F]fluoride ions
from radiochemical preparations. The removal of [18F]fluoride
was evidenced by the absence of a bone signal in PET images
(Figure 3A and Supporting Information) (25) and biodistribution
studies (Figure 4, bone). In mouse serum, the chemical release
of F- from 18F-labeled Lymphoseek 3 had a half-life of 21 h
(Supporting Information), 11.6-fold slower than the radioactive
decay of 18F.

Multimodality PET/CT/NIRF Imaging. [18F]Lymphoseek
3 was tested for in vivo multimodal imaging in 12 mice.
Injections containing 1 nmol and 10-50 µCi of fluorescent 3,
with 0 or 10 nmol of added unlabeled Lymphoseek, were made
into the right rear footpad of anesthetized nude mice positioned
securely on trays for corroborative multimodality imaging. One
hour later, a 20 min PET/CT scan was acquired (Figure 3A,
left). Mice were then sacrificed by CO2 inhalation followed by
cervical dislocation; skin was removed, and NIRF images were
obtained before (Figure 3C, left) and after excision of nodes,
which were placed below their location of origin on the imaging
tray. The bright field image of this dissection is shown in Figure
3B (before excision, left, and after excision, right). Successful
node excision was confirmed by both NIRF (Figure 3C, right)
and PET/CT imaging (Figure 3A, right, and Supporting
Information), showing the node signal outside the body.
Following image acquisition, tissues were collected for scin-

Figure 3. Multimodality imaging of a mouse injected with a 10 µL, 1 nmol, 48.1 µCi dose of 18F-labeled Lymphoseek 3 (0.048 Ci/µmol). The red
arrows indicates the location of the sentinel lymph node. (A) Pre-excision, live-mouse PET (red color table)/CT (blue color table) scan (left) and
postoperative PET/CT scan (right) of the mouse with excised nodes (right and left lumbar and popliteal) that are placed below the excision site in
the field of view. (B) Bright field images of the mouse with skin removed before (left) and after node excision (right). (C) NIRF images taken 90
min postexcision on a custom full field IR camera before (left) and after (right) lymph node excision. The injection site was covered with black
cardboard to block intense signal from the foot and allow better visualization of the fluorescent lymph nodes. (D) H and E stain (top, color images)
and NIRF (bottom, black and white images) histological verification of lymph node excision. A PET projection video of panel A is given as
Supporting Information.
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tigraphy and histological sectioning (Figure 3D). Little or no
flow-through of [18F]Lymphoseek 3 to distal lymph nodes was
observed in both NIRF and PET images taken under both
injection conditions. PET and NIRF signals were confined to
the SLN, the injection site, and, in some cases, the bladder.

Biodistribution. Scintigraphy corroborated the qualitative
data observed in PET and IR images (Figure 3A,C). The
[18F]Lymphoseek 3 tissue distribution is shown in Figure 4 as
the percent of injected dose (% ID) before (left) and after (right)
normalization by tissue mass. In 1 and 11 nmol injections of
Lymphoseek, the tissues of interest containing the most [18F]Ly-
mphoseek 3 are the right foot (320 ( 60 and 390 ( 40% ID/g
per foot, respectively) and the right popliteal (sentinel) lymph
node (170 ( 50 and 300 ( 140% ID/g per node, respectively).
There is 4-7 times less [18F]Lymphoseek 3 in the ipsilateral
distal (lumbar) lymph nodes (22 ( 6 and 75 ( 30% ID/g,
respectively) than in the sentinel lymph nodes. Much less
[18F]Lymphoseek accumulation is observed in contralateral
nodes (5 ( 3 and 9 ( 4% ID/g for contralateral popliteal lymph
nodes and 8 ( 2 and 23 ( 10% ID/g for contralateral lumbar
lymph nodes, for 1 and 11 nmol injections, respectively).
Nonlymphatic tissue, i.e., blood, liver, kidney, spleen, and bone,
contained not more than 4% ID/g of [18F]Lymphoseek 3.

Statistical analysis verified that [18F]Lymphoseek 3 retains
receptor targeting properties consistent with [99mTc]Lymphoseek
literature (32, 41). In mice treated with 1 nmol of [18F]Lym-
phoseek, the sentinel node extracted 87 ( 7% (Table 1) of the
total lymph node accumulation, significantly greater than 74 (
7% extracted at an 11 nmol dose. These values correspond to
3 ( 0.9 and 40 ( 15 pmol of total Lymphoseek (3 ( 0.9 and
3.6 ( 1 pmol of 18F-labeled Lymphoseek 3, respectively) in
the sentinel node. These are subsaturating doses of Lymphoseek.
The Lymphoseek binding capacity from a rear footpad injection
in the popliteal node of mice is 49 ( 25 pmol (41).

Histology. NIRF histology (Figure 3D) showed that Lym-
phoseek 3 indeed localized to SLNs (Figure 3D), though 18F
activity was no longer measurable. On the basis of the specific
activity of radiolabeling, the majority (>99%) of the fluorescent
material was nonradioactive [19F]3 even before the 18F had
decayed. Hematoxylin and eosin (H and E) frozen sections of
the excised lymph nodes of mice were prepared and analyzed.
Specifically, lymph nodes were confirmed through the observa-
tion of an encapsulated dense mass of densely packed lympho-
cytes. The dense packing of these mononuclear cells includes
a high nucleus:cytoplasm ratio that gives a dense basophilic/
purple staining under H and E staining conditions.

DISCUSSION

We describe the novel synthesis of a small molecule NHS
ester that confers both 18F PET and NIRF visibility onto
targeting ligands bearing free amines. Heterobifunctional adapt-
ers could easily convert the selectivity toward other reactive
groups such as thiols. Because the 18F is appended to the cyanine
dye, only one attachment site on the targeting ligand is required.
If standard NIRF and PET labels were independently affixed
(4, 7), at least two chemically reactive yet biologically tolerant
sites on the ligand would be required. Unless regioselectivity
could be tightly controlled, greater combinatorial complexity
of products could result, because each site could remain
unmodified or receive a NIRF or PET label. Homogeneous
labeling happens not to be essential for Lymphoseek, which
already contains a statistical distribution of amines, but Lym-
phoseek had the advantages of large-scale availability and
extensive preclinical and clinical characterization. PET/NIRF-
labeled Lymphoseek 3 retains the desired pharmaceutical
properties of [99mTc]Lymphoseek: rapid 1 h sentinel node
targeting, low level of distal lymph node accumulation, and
sentinel node extraction values (1 nmol dose, 87 ( 7%; 11 nmol

Figure 4. [18F]Lymphoseek 3 tissue biodistribution in mice that were sacrificed 1 h and 20 min following injection. Units of percent injected dose
(ID, left) and percent injected dose per gram (right). Biodistribution data from 12 mice were used to compile this figure.

Table 1. Distribution of Radioactive [18F]Lymphoseek 3 in Mice That Were Sacrificed 80 min following Injectiona

percent [18F]3 activity
extracted in the sentinel node

Lymphoseek in the sentinel or
popliteal lymph node (pmol)

(percent of detected nodal Lymphoseek)

Lymphoseek flow-through to the
distal or lumbar node (pmol)

(percent of detected nodal Lymphoseek)

1 nmol Lymphoseek injection 87 ( 7% 3.0 ( 0.9 (91%) 0.3 ( 0.1 (9%)
11 nmol Lymphoseek injection 74 ( 7% 40 ( 15 (83%) 8 ( 3 (17%)
t test (one-tailed two-sample

unequal variance)
P ) 0.022 P ) 0.033

a Scintigraphy data from six mice were obtained per injected Lymphoseek dose (12 mice total). The percent activity extracted is defined as the
difference in counts between the sentinel and distal lymph nodes minus the sum of counts in the sentinel and distal lymph nodes [(countspopliteal -
countslumbar)/(countspopliteal + countslumbar)]. The percent of detected nodal Lymphoseek is defined as the amount of Lymphoseek in the lumbar lymph
node divided by the sum of the Lymphoseek in both the popliteal and lumbar lymph nodes. Error ) σ/(n ) 6)1/2.
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dose, 74 ( 7%) that compare very well to [99mTc]Lymphoseek
extraction ratios, 90 ( 10% in rabbit popliteal SLN (31, 32).

PET rapidly and noninvasively quantitates picomole amounts
of 1 through deep tissue. An example of the superior tomo-
graphic resolution conveyed by 18F PET in Figure 3A is included
as an .mpg file (Supporting Information). Notably, this high-
resolution projection was generated from a 20 min scan on a
live mouse using only 33 µCi of activity. PET is more reliable
than NIRF for imaging through deep tissue. This point is
illustrated by comparing the skin-on NIRF image (Figure 2Ai)
to the skin-off NIRF image (Figure 2Aii). If one were to use
Figure 2Ai to evaluate Lymphoseek distribution based on
relative NIRF brightness, it would incorrectly appear that the
sentinel node (red arrow), buried in muscle and fat, has less
Lymphoseek than the lumbar node (blue arrow), which sits next
to the spine near the surface of the mouse. Following mouse
sacrifice followed by skin removal (Figure 2Aii), we see that
the opposite is true and that the NIRF signal is biased to tissue
depth. Note that the lymph nodes seen in Figure 2 Ai would be
entirely invisible by NIRF if wild-type, hair-bearing mice were
used. PET is superior to NIRF in that it allows for quantita-
tive noninvasive deep tissue three-dimensional imaging. Both
the live mouse PET images shown in Figure 3 and the .mpg
file included as Supporting Information illustrate this. Additional
advances in PET imaging may include better CT attenuation
algorithms for higher-resolution images and real-time PET
reconstruction to guide surgery. If a PET scanner is not
available, standard scintigraphic devices can still be used to
register the positron-generated γ-rays (42-44). Consistent with
previous studies of 18F-labeled aryltrifluoroborates, no signal is
observed in bone structure (Figures 3A and 4), demonstrating
the in vivo stability of the aryl trifluoroborate to solvolysis and
release of free 18F (22, 23, 45).

The stable NIRF component on 1 also allows for NIRF-
guided surgery as well as fluorescent histology long after
radiotracer decay. Histological resolution (Figure 3D) and the
imaging of lymph tracks (Figure 2Bi-iii) are possible only by
NIRF, as these structures fall below the spatial detection limits
of PET. The heterogeneous foci seen in NIRF histology (Figure
3D) identify the most probable places to find micrometastatic
disease in the SLN (46), and their fluorescence might reduce
the error in pathological evaluations. The heterogeneous dis-
tribution of 3 also suggests that only a fraction of the SLN
actually filters the afferent lymph channel draining the foot. Both
a 1 nmol injection of pure [18F]Lymphoseek 3 and an 11 nmol
injection of 3 diluted with unlabeled Lymphoseek are useful in
highlighting sentinel popliteal nodes. Our use of a diluted 11
nmol injection may seem superfluous as it requires an extra step
in preparation and is slightly inferior to the 1 nmol injection in
terms of unwanted flow-through to distal lymph nodes (Table
1). However, the fact that the lymph node mannose receptor
binding of 3 can be diluted with unlabeled Lymphoseek such
that distal node flow-through is increased serves to illustrate an
important trait of the dual probe, that the conjugation of targets
to NHS ester 1 does not alter its target’s desired diagnostic
properties, in this case Lymphoseek’s mannose receptor-specific
targeting properties.

This PET/NIRF version of Lymphoseek 3 may improve
sentinel node biopsy, because a single injection would replace
the required multiple-injection combination (47, 48) of a
radiotracer, such as [99mTc]Lymphoseek or [99mTc]sulfur colloid,
with a nonspecific optical excision aid such as isosulfan blue
dye. Attachment of both the positron emitter and fluorophore
to a single molecularly targeted agent diminishes the risk of
flow-through to distal lymph nodes and ensures perfect coreg-
istration of the two signals, allowing PET and NIRF to
complement each other. PET images would noninvasively

identify sentinel nodes that drain a tumor and aid in preoperative
planning. During surgery, Geiger counting of the γ-rays could
help locate deeply buried nodes. Once they were exposed,
higher-resolution real-time NIRF imaging would guide precision
resection, including lymph tracks as well as nodes. A postopera-
tive PET scan could confirm whether removal was complete,
and NIRF would aid histological identification of metastases
within the resected tissue. Successful application of PET/NIRF
NHS ester 1 to a well-established, clinically interesting system
suggests extension to other medically relevant targets. In
previous combinations of PET and NIRF, the positron emitter
and fluorophore were independently attached (4, 7), whereas 1
combines these capabilities in a single, versatile small molecule
only slightly larger than the usual commercially available NIRF
labels. It is essential that 18F is incorporated into fluoroborates
under mild conditions such as a weakly acidic methanol/water
solution at 40 °C, because heptamethine cyanine dyes would
not survive high-temperature reaction with anhydrous nucleo-
philic fluoride as required for traditional 18F chemistries such
as fluorobenzyl labeling. Despite scope for further optimization,
formation of aryl fluoborate from F- satisfies many of the criteria
for “click chemistry”, modularity, high yield, no offensive
byproducts, mild aqueous reaction conditions, orthogonality to
other functional groups, and simple product isolation (49).
Although the B-F bond is not as chemically stable as the usual
C-F bonds, appropriately substituted aryl fluoborates are stable
enough that hydrolysis is negligible within the radioactive half-
life of 18F. Our new chemistry should facilitate the multimodality
labeling of peptides, proteins, and polysaccharides, medically
relevant ligands previously difficult or impossible to label by
previous methods.
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