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SUMMARY

The tetracysteine sequence YRECCPGCCMWR
fused to the N terminus of green fluorescent
protein (GFP) self-aggregates upon biarsenical
labeling in living cells or in vitro. Such
dye-triggered aggregates form temperature-
dependent morphologies and are dispersed by
photobleaching. Fusion of the biarsenical aggre-
gating GFP to the regulatory (R) or catalytic (C)
subunit of PKA traps intact holoenzyme in com-
pact fluorescent puncta upon biarsenical label-
ing. Contrary to the classical model of PKA acti-
vation, elevated cAMP does not allow RIa and
Ca to diffuse far apart unless the pseudosub-
strate inhibitor PKI or locally concentrated sub-
strate is coexpressed. However, RIIa releases
Ca upon elevated cAMP alone, dependent on
autophosphorylation of the RIIa inhibitory
domain. DAKAP1a overexpression induced R
and C outer mitochondrial colocalization and
showed similar regulation. Overall, effective
separation of type I PKA is substrate dependent,
whereas type II PKA dissociation relies on auto-
phosphorylation.

INTRODUCTION

Protein kinase A (PKA) is essential for the regulation of

diverse cellular processes, including ion channel conduc-

tance, metabolism, cell migration, and gene expression.

Decades of research have elucidated many of the biolog-

ical roles and unique properties of this prototypical kinase,

yet recent evidence suggests that the classical mecha-

nism of cAMP-induced dissociation and activation may re-

quire revision when explored in a cellular environment [1].

PKA holoenzyme is present as two isoforms in cells,

type I and type II, which are defined by the subtype of reg-
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ulatory subunit, either RI or RII. Type II holoenzyme prefer-

entially binds many A kinase-anchoring proteins (AKAPs)

[2], spatially localizing the holoenzyme to precise subcel-

lular locations or near specific substrates. Whereas RII

anchoring is generally static, anchoring of RI to AKAPs is

more dynamic. Both RI and RII isoforms bind to C through

specific interactions that include docking of an inhibitory

peptide into the kinase active site [3]. Phosphorylation of

serine at the phosphorylation site (P site) within the RII in-

hibitory domain decreases the binding affinity of type II

PKA holoenzyme [4] and enhances dissociation. The cor-

responding position of RI is alanine. Although PKA has

been thoroughly studied in vitro, it has been technically

difficult to monitor the full dissociation of PKA in living

cells.

The original evidence that cAMP induces PKA holoen-

zyme dissociation is based on decades-old chromatogra-

phy experiments on dilute purified components [4–6]. We

have previously shown in cells that cAMP can dissociate

fluorescein-labeled C from rhodamine-labeled RI [7] or

RII [8] as well as fluorescent protein fusions of C and RII

[9], as evidenced by decreases in fluorescent resonance

energy transfer (FRET) and migration of C subunit into

the nucleus, leaving R in the cytosol. However, random

or site-specific chemical labeling of PKA subunits can

alter the affinity of holoenzyme and dissociation dynamics

(unpublished data), so such modified subunits may fail to

reflect endogenous PKA dissociation, even while remain-

ing usable for measuring cAMP. Interestingly, cAMP-

evoked decreases in FRET are generally larger with type

II holoenzyme than type I [8, 9], which were assumed to

be a reflection of the difference in distance and orientation

of the two fluorophores in the different PKA isoforms in un-

stimulated cells. Although dissociation is not required for

a FRET change, if dissociation does occur, it reduces

FRET all the way to zero, thus providing an additional

and more powerful mechanism for FRET reduction than

just a conformational readjustment. Recently, cAMP-

dependent conformational changes in type I and II PKA

have been measured using bioluminescent resonance

energy transfer (BRET), although this method sacrifices
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single-cell resolution [10]. In cells, cAMP and agonist ana-

logs caused much smaller decreases in BRET in type I

than in type II PKA. Time-resolved anisotropy of fluores-

cently labeled RIIa and Ca suggested that cAMP-bound

holoenzyme is stable yet catalytically active [11]. Unfortu-

nately, kinase activity and dissociation were not simulta-

neously measured, so the existence of an active intact ho-

loenzyme is still controversial. Small-angle scattering has

also verified a stable cAMP-bound form of type I PKA ho-

loenzyme [12]. Despite the circumstantial evidence, intact

cAMP-bound PKA holoenzyme has not been visualized in

living cells.

During our efforts to optimize the fluorescence and af-

finity of the biarsenical tetracysteine system, we inadver-

tently discovered a specific tetracysteine-green fluores-

cent protein (GFP) that aggregated upon addition of the

biarsenical dye ReAsH [13]. We now characterize the

structural requirements for such aggregation in greater

detail, then apply this system to study PKA dynamics in

cells. By inducing colocalization of diffuse PKA holoen-

zyme, weak interactions between R and C subunits are

trapped in highly visible puncta, providing a simple assay

to study the mechanisms of C dissociation. The presence

or absence of Ca in puncta reveals unique differences in

the dissociation of type I and type II holoenzyme in living

cells, leading to a new cellular understanding of PKA reg-

ulation. Furthermore, by DAKAP1a tethering, the effects of

substrate concentration and Ca diffusion are correlated

with PKA activity in live cells. This reversible system for in-

duced protein colocalization and inactivation opens many

opportunities to manipulate complex signaling pathways

in living cells.

RESULTS

Biarsenical Dye-Triggered Aggregation
of a Tetracysteine-GFP
During mammalian cell-based selections for tetracysteine

sequences with enhanced ReAsH brightness and affinity

while fused to the N terminus of Emerald GFP [14] with

an additional V163A mutation to improve folding, the tetra-

cysteine sequence YRECCPGCCMWR was serendipi-

tously isolated and found to undergo self-aggregation

when labeled with ReAsH (Figure 1A; see Movie S1 in

the Supplemental Data available with this article online).

This tetracysteine-GFP fusion is hereafter referred to as

BA-GFP for biarsenical aggregating GFP. By forming in-

soluble protein aggregates upon labeling, ReAsH-BA-

GFP shields itself from high-dithiol washes. Additionally,

due to the highly compact nature of the aggregates,

FRET from GFP to ReAsH was very efficient, mediated

by intermolecular FRET within coaggregated dye com-

plexes. Because fluorescence-activated cell sorting

(FACS) ignores subcellular localization, this particular se-

quence became highly enriched, representing the majority

of clones by the final round of selection. Clearly the aggre-

gates were not any more harmful than normal biarsenical

labeling, as cells expressing high levels of the tag sur-

vived repeated rounds of ReAsH-induced aggregation
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and selection during several weeks in culture. BA-GFP

clones eventually outcompeted other TC-GFP variants

to dominate the final selection pool.

Aggregation occurs shortly after labeling with ReAsH or

with the blue fluorescent analog CHoXAsH [15], but not

with the green fluorescent analog FlAsH [16] (Figure S1),

whose protruding carboxyphenyl ring presumably blocks

aggregation. To further understand the requirements for

induced aggregation, the tetracysteine was separated

from GFP and fused to the N terminus of b-actin and a-

tubulin. Both cytoskeletal proteins expressed and local-

ized appropriately in cells and labeled efficiently with

ReAsH, but failed to aggregate (Figure S2A). When the

complete tetracysteine-GFP tag was fused to the N termi-

nus in a similar manner, aggregation of nonpolymerized

b-actin or a-tubulin subunits occurred, but cells failed to

retract and the cytoskeleton remained intact (Figure S2B),

which could be due to the high levels of endogenous

expression. Additionally, swapping the tetracysteine

fusion to the C terminus of GFP prevented aggregation

(Figure S3A). Fusion of small epitope tags, such as

HA or Myc, N-terminal to the tetracysteine in BA-GFP

did not disrupt aggregation, but the FLAG epitope or larger

protein fusions were inhibitory (Figures S3B and S3C).

Clearly, both N-terminal fusion to GFP and an un-

constrained tetracysteine N terminus are important for

inducible aggregation.

Replacement of Emerald GFP (F64L, S65T, S72A,

N149K, M153T, V163A, I167T) with enhanced GFP

(F64L, S65T) plus the folding mutation V163A (Figures

S4A and S4B) or mutation of the critical residue for chro-

mophore formation, Y66A, drastically increased the criti-

cal concentration for aggregation from a few micromolar

to near millimolar concentrations inside cells. Fusion to

mGFP (F64L, S65T, S72A, N149K, M153T, V163A,

I167T, plus the monomerizing mutation A206K) [17] had

only a slight effect on the critical concentration (Figures

S4A and S4B), whereas fusions to either CFP or YFP

lost all ability to aggregate (Figure S3A). Therefore, we

chose to use BA-GFP including A206K (BA-mGFP) for

further experiments. Purified BA-GFP protein also aggre-

gated upon ReAsH or CHoXAsH labeling in vitro, demon-

strating cellular factors are not required for aggregation.

Salt removal or 1% SDS dissolved the in vitro precipitates,

but the nonionic detergent NP-40 (1%) had no effect.

Alanine scanning across six residues flanking the

CCPGCC (Y1R2E3-CCPGCC-M10W11R12) implied each

residue except R2 is important for aggregation in cells

(Figures S4C and S4D). In summary, aggregation requires

a tetracysteine-GFP fusion nearly identical to that

originally isolated by FACS selection.

Temperature and Light Control of Aggregation
Depending on the biarsenical labeling temperature, differ-

ent aggregate morphologies form in living cells. Room

temperature labeling promotes the formation of punctate

aggregates (Figure 1B) with limited diffusibility from the

nucleation site. Alternatively, labeling at 37�C causes for-

mation of fiber-like aggregates, which often coalesce into
07 Elsevier Ltd All rights reserved
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Figure 1. Photo-Reversible, Temperature-Dependent Aggregate Morphologies Induced in Living Cells

(A) Time course of aggregate formation. HeLa cells expressing BA-mGFP were labeled with ReAsH, and both GFP (480 nm, 505 nm dichroic,

535/25 nm; green) and GFP-mediated FRET emission (480 nm, 505 nm dichroic, 653/95 nm; red) channels were collected. GFP quenching and

aggregation are complete within approximately 15 min. The scale bars represent 20 mm.

(B) ReAsH-induced aggregates form as puncta at room temperature. GFP (480/30 nm, 505 nm dichroic, 535/25 nm; green) and ReAsH fluorescence

(568/55 nm, 600 nm dichroic, 653/95 nm; red) are overlaid.

(C) ReAsH labeling at 37�C induces the formation of fiber-like aggregates.

(D) Aggregates are dispersed upon spatial ReAsH photobleaching. A defined circular region was exposed to high-intensity excitation light by con-

tracting the microscope objective diaphragm. GFP fluorescence increases and diffuses throughout the cell.

(E) Fiber-like aggregates are also photo-reversible.
Chemistry & Biology 14, 1031–1042, September 2007 ª2007 Elsevier Ltd All rights reserved 1033
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larger ribbons (Figure 1C). Both forms of aggregates are

stable in cells for days without significant toxicity. Fusion

of BA-mGFP to b-lactamase or the protein kinase A pseu-

dosubstrate inhibitor PKI led to the formation of fiber-like

aggregates when labeled at room temperature, demon-

strating that specific fusion partners can influence the

temperature-dependent morphologies. Following a spa-

tially controlled photobleach of either ReAsH or CHoXAsH

aggregates, the aggregates dissolved, freeing the fusion

protein to diffuse throughout the cell (Figures 1D and

1E). Because of the high concentration of fluorophores

present in aggregates, photo-generated free radicals

presumably damage neighboring fluorophores, increasing

the photobleaching rate of ReAsH by almost an order of

magnitude (Figure S5). Photo-induced dispersion of

CHoXAsH aggregates requires far less light, as it is

approximately two orders of magnitude less photo-stable

than ReAsH. Photobleached tetracysteines fail to re-

label with fresh biarsenical after dithiol washes, limiting

reversible aggregation to one cycle.

To further understand the unique characteristics of

this novel reversible aggregation tag, several BA-mGFP

fusions were observed using correlated light and elec-

tron microscopy. Using the unique functionality of the

biarsenical-tetracysteine system, ReAsH fluorescence

was photo-oxidized to polymerize diaminobenzidine

(DAB) for osmium staining and visualization by electron

microscopy (EM) [18]. High-resolution electron micro-

graphs of BA-mGFP labeled at room temperature show

small tangles of small fibers radiating from the site of

nucleation (Figure 2A). In contrast, BA-mGFP labeled at

37�C aggregates as ordered bundles, aligning the labeled

protein into longer fibers (Figure 2B). Several PKA compo-

nents were readily aggregated upon addition of either

CHoXAsH or ReAsH into discrete highly fluorescent

puncta. ReAsH aggregates of BA-mGFP-RIa or BA-

mGFP-Ca are present as round balls (Figure 2C), approx-

imately the same size as mitochondria, whereas PKI ag-

gregates as long, thick fibers similar to those seen when

labeling at 37�C (Figure 2D). The nature of the aggregates

are highly variable, but they clearly begin as single fibers of

polymerized BA-mGFP that either intertwine or align to

form various fiber-like structures.

PKA Holoenzyme Association Visualized
by Coaggregation
BA-mGFP-RIa and BA-mGFP-Ca subunits are suscepti-

ble to biarsenical-induced aggregation, yet it was unclear

whether intact PKA holoenzyme containing both RI and C

was recruited to aggregates. Because the excitation peak

of CHoXAsH is �100 nm blue-shifted from GFP, both BA-

GFP and mCherry can be visualized without biarsenical

excitation or bleaching. Coexpression of BA-mGFP-RIa

and mCherry-Ca led to CHoXAsH-dependent coaggrega-

tion, demonstrating intact holoenzyme is indeed recruited.

Unexpectedly, BA-mGFP-RIa and mCherry-Ca remained

colocalized when prestimulated with forskolin, despite

persistent cAMP elevation with the phosphodiesterase

inhibitor 3-isobutyl-1-methylxanthine (IBMX) (Figure 3A;
1034 Chemistry & Biology 14, 1031–1042, September 2007 ª2
Movie S2). This persistent association was not dependent

on any specific order or size of fusion tag, as C-terminally

tagged Ca-HA and Ca-mCherry behaved similarly.

Likewise, BA-mGFP-Ca and mCherry-RIa also remained

associated following stimulation (Figure 3B).

The PKA pseudosubstrate inhibitor PKI binds Ca about

as strongly as cAMP-free RIa (Kd = 0.15 nM). Both PKI and

RIa are more than simply pseudosubstrate inhibitors, as

each has high-affinity binding sites beyond the Ca sub-

strate-binding domain. Coexpression of mCerulean-PKI

showed little effect on RIa and Ca coaggregation in unsti-

mulated, serum-starved cells (Figure 3C), but did prevent

coaggregation in forskolin-stimulated cells (Figure 3D). PKI

and RIa compete for a common Ca interaction site, and

Figure 2. Correlated Light and Electron Microscopy Reveal

High-Resolution Aggregate Composition

(A) BA-mGFP labeled with ReAsH at 22�C forms aggregates com-

posed of many small fiber tangles. Individual fibers are seen radiating

from the nucleation site. The fluorescence scale bar represents 5 mm.

The EM scale bar represents 500 nm.

(B) BA-mGFP labeled with ReAsH at 37�C forms small bunches of

fibers.

(C) BA-mGFP-RIa labeled with ReAsH at 22�C forms round, dense ag-

gregates with few radiating fibers. Similar morphology was observed

with BA-mGFP-Ca aggregates.

(D) BA-mGFP-PKI aggregates (22�C) are highly ordered, aligned single

fibers that combine to form a large elongated fiber.
007 Elsevier Ltd All rights reserved
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Figure 3. Type I PKA Holoenzyme Coaggregates in Cells

(A) Forskolin stimulation is insufficient to separate BA-mGFP-RIa (480/30 nm, 505 nm dichroic, 535/25 nm) and mCherry-Ca (540/25 nm, 560 nm

dichroic, 595/50 nm). The scale bars represent 20 mm.

(B) BA-mGFP-Ca and mCherry-RIa coaggregate despite forskolin stimulation.

(C and D) Coexpression of mCerulean-PKI (436/10 nm, 450 nm dichroic, 460/40 nm) does not disrupt coaggregation of BA-mGFP-RIa and mCherry-

Ca in serum-starved cells (C), but prevents coaggregation upon the addition of forskolin and IBMX (D).

(E) Expression of mCerulean-kemptide does not disrupt coaggregation in forskolin/IBMX-stimulated cells.

(F) Expression of mCerulean-PKI (A20S) prevents efficient coaggregation in forskolin/IBMX-stimulated cells.
neither BA-mGFP-RIa and mCerulean-PKI or BA-mGFP-

PKI and RIa coaggregate. Overexpression of the PKA

model substrate mCerulean-kemptide (LRRASLG) (Fig-

ure 3E) had no effect on RIa(cAMP)2 and Ca coaggrega-

tion, but expression of mCerulean-PKI (A20S) (mutated

from a pseudosubstrate to a substrate) did block most

coaggregation (Figure 3F). Neither substrate was ob-

served in aggregates. Therefore, substrate does not form

a stable ternary complex with RI and C, but transiently

competes with RI for access to the active site of free C,

where it is immediately phosphorylated and released.

Regulatory Inhibitor Domain Regulates
Ca Coaggregation
There are two general classes of functionally nonredun-

dant PKA regulatory subunits in cells, RI and RII. To under-

stand the dynamics of RII dissociation, we next tested BA-

mGFP-RIIa and BA-mGFP-RIIb in cells, but unfortunately

both failed to efficiently aggregate with CHoXAsH. Aggre-

gation may require sufficient linker flexibility, as RI has

a flexible 11 residue linker but RII has only 1 or 2 residues
Chemistry & Biology 14, 1031–104
before the dimerization domain. Although we could not

directly aggregate RII, CHoXAsH aggregates of BA-

mGFP-Ca efficiently recruited mCherry-RIIa (Figure 4A,

upper). In contrast to RIa, mCherry-RIIa released from

BA-mGFP-Ca when stimulated with forskolin alone (Fig-

ure 4A, lower). This dissociation occurred exclusively in

medium- to low-expressing cells, validating that cAMP

raises the dissociation constant of phosphorylated RII

holoenzyme to micromolar levels [4]. As was seen with

type I PKA, BA-mGFP-Ca exchanged mCherry-RIIa for

mCerulean-PKI only after cAMP stimulation.

A fundamental difference between RI and RII is the se-

quence of the inhibitor domain that occupies the catalytic

site of Ca [3]. The inhibitor domain of RI has an alanine at

the P site, whereas RII contains a serine, which is auto-

phosphorylated [19]. To determine the importance of the

P site residue in RIIa, this site was mutated from Ser to

Ala. This single mutation blocked cAMP-induced dissoci-

ation of mCherry-Ca from RIIa, even in the presence of

mCerulean-PKI (Figure 4B). The analogous Ser-to-Glu

mutation slightly affected holoenzyme formation, but
2, September 2007 ª2007 Elsevier Ltd All rights reserved 1035
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upon stimulation, Ca dissociated in cells expressing even

high levels of tagged type II holoenzyme (Figure 4C). In ad-

dition, the Glu substitution enhanced Ca accessibility for

mCerulean-PKI. Phosphorylation of Ser-99 enhances dis-

Figure 4. Type II PKA Dissociation Requires Elevated cAMP

and Ser-99 Phosphorylation

(A) BA-mGFP-Ca (480/30 nm, 505 nm dichroic, 535/25 nm) coaggre-

gates with mCherry-RIIa (540/25 nm, 560 nm dichroic, 595/50 nm) in

serum-starved cells, but separate following forskolin stimulation in

weakly overexpressing cells. The scale bars represent 20 mm.

(B) Mutation of the RIIa inhibitor domain phosphorylation site from Ser

to Ala (S99A) blocks dissociation following forskolin stimulation. Coex-

pression of mCerulean-PKI (436/10 nm, 450 nm dichroic, 460/40 nm)

fails to prevent coaggregation of BA-mGFP-Ca and mCherry-RIIa

S99A.

(C) RIIa S99E mutation causes forskolin-dependent release of

mCherry-RIIa from BA-mGFP-Ca aggregates.
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placement of the RII inhibitor domain, just as other PKA

substrates are released after phosphorylation. To block

P site phosphorylation by means other than mutation,

we pretreated cells with the PKA ATP-binding site inhibitor

H89 before raising cAMP. Unexpectedly, H89 not only al-

lowed RIIa to dissociate from Ca but even promoted dis-

sociation of RIIa S99A from Ca, suggesting additional

destabilization of the complex.

Next, we reciprocally mutated the pseudosubstrate se-

quence of BA-mGFP-RIa to either Ser or Asp, which are

known to support intact and cAMP-inducible holoenzyme

in vitro [20], albeit with reduced MgATP dependence and

increased salt sensitivity. In cells, both mutants still formed

holoenzyme, but unlike wild-type BA-mGFP-RIa, each

mutation led to cAMP-induced separation in the absence

of mCerulean-PKI (Figures 5A and 5B). Under basal condi-

tions, mCerulean-PKI expression alone was sufficient to

dissociate BA-mGFP-RIa A97D and in low-expressing

BA-mGFP-RIa A97S cells, highlighting the importance of

inhibitor displacement for activation. The aggregate den-

sity is also affected in BA-mGFP-RIa (A97D), which implies

the mutation leads to further conformational changes that

weaken aggregation. Altogether, the data presented ex-

emplify a fundamental difference in RI and RII activation

and demonstrate how P site phosphorylation of R subunits

regulates their ability to release Ca.

Reversible Inhibition of Nuclear Signaling
In order to understand the functional consequences of in-

tact cAMP-bound type I PKA, we assayed PKA activation

in single living cells following forskolin and IBMX addition

using the genetically encoded, nuclear-localized, ratio-

metric phosphorylation reporter AKAR2-NLS [21]. Coex-

pression of BA-mGFP-Ca and mCherry-RIa led to coag-

gregation and complete silencing of nuclear PKA activity

upon labeling (Figure 6), as BA-mGFP-Ca aggregates

contain both type I and type II PKA holoenzyme. Low-

expressing cells failed to completely inactivate nuclear

PKA signaling, presumably because BA-mGFP-Ca levels

must be sufficient to titrate endogenous Ca from native

holoenzyme to BA-mGFP-Ca hybrid holoenzyme. PKA

holoenzyme contains two C subunits and two R subunits,

so BA-mGFP-Ca aggregates also contain endogenous

C subunit recruited in trans. By photobleaching ReAsH

BA-mGFP-Ca aggregates, nuclear activity is restored.

These results demonstrate that PKA activity can be indu-

cibly inhibited by biarsenical-dependent aggregation, and

reversed by photo-induced reactivation without signifi-

cant chromophore-assisted light inactivation [22].

AKAP Colocalization Reveals Substrate-
Dependent Release
AKAP-mediated targeting of PKA holoenzyme to subcel-

lular locations is a key mechanism for spatially focusing

PKA activity [2]. The dual isoform specific DAKAP1a local-

izes and concentrates both type I and type II holoenzyme

to the outer mitochondrial membrane [23]. Overexpres-

sion of this AKAP leads to mitochondrial recruitment and
07 Elsevier Ltd All rights reserved
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Figure 5. Mutational Analysis of Type I PKA Holoenzyme Dissociation

(A) BA-mGFP-RIa A97S (495/10 nm, 505 nm dichroic, 535/25 nm) forms intact holoenzyme with mCherry-Ca (540/25 nm, 560 nm dichroic, 595/50 nm)

in serum-starved cells, but dissociates upon stimulation with forskolin/IBMX. The scale bars represent 20 mm.

(B) BA-mGFP-RIa A97D forms holoenzyme with mCherry-Ca in serum-starved cells, but dissociates following forskolin/IBMX stimulation.
colocalization of DAKAP1a-mCerulean, mGFP-RIa, and

mCherry-Ca. Importantly, DAKAP1a localization could al-

ter PKA dynamics by additional endogenous regulatory

mechanisms, but because colocalization is not artificially

induced, dissociation can be monitored dynamically with-

out potential aggregation-induced artifacts. Following for-

skolin stimulation, mCherry-Ca remained colocalized to

DAKAP1a and RIa at mitochondria (Figure 7A). As ob-

served with aggregated cytosolic type I holoenzyme,

complete dissociation from DAKAP1a-localized type I ho-

loenzyme only occurred with both forskolin stimulation

and coexpression of mCerulean-PKI. Also, similar to

type II holoenzyme aggregates, mCherry-Ca released

from DAKAP1a-localized mCerulean-RIIa following stimu-

lation, dependent on low expression levels (Figure 7B).

Intermediate dissociation was not observed in RIa-over-

expressing cells, suggesting the amount of type II holoen-

zyme is overcome by RIa overexpression. Addition of the

kemptide-based ratiometric fluorescent reporter AKAR2

had no effect on the separation of DAKAP1a-localized

type I PKA holoenzyme following stimulation. Further-

more, cytosolic kinase activity is significantly reduced by

DAKAP1a localization, correlating with the observed fail-

ure to dissociate (Figure 7E). DAKAP1a localization of

type I PKA and expression of AKAR3 fused to the DAKAP

targeting motif [24] colocalizes and concentrates both

type I PKA holoenzyme and the reporter substrate. For-

skolin and IBMX stimulation led to rapid dissociation of

mCherry-Ca and a robust kinase response (Figures 7D

and 7E), demonstrating localized substrate is required

for efficient release of Ca from AKAP-localized type I

PKA holoenzyme in HeLa cells.
Chemistry & Biology 14, 1031–1042
DISCUSSION

By selecting for dithiol-resistant ReAsH-labeled tetracys-

teine-GFP fusions, we identified a fluorescent tag capable

of inducing self-aggregation when labeled with select

biarsenical dyes. BA-GFP forms two distinct fiber mor-

phologies dependent on the labeling temperature: puncta

at room temperature or fibers at 37�C. Such temperature

dependence is reminiscent of the yeast prion protein

Sup35, which forms different heritable fiber morphologies

dependent on growth temperature [25]. At 4�C, short,

fragile, and more infectious prion strains develop, whereas

at higher temperatures, longer, more stable, and less in-

fectious prion strains form. We have also observed that

certain protein fusions to BA-GFP favor the fiber-like mor-

phology when labeled at room temperature, such as BA-

mGFP-b-lactamase and BA-mGFP-PKI. Due to the pre-

ferred Pro-Gly sequence internal to the cysteine pairs,

we believe the optimal conformation for biarsenical-

bound tetracysteines is a b hairpin, similar to the b sheets

that define b-amyloid prions. The electron micrographs of

BA-GFP show distinct filaments radiating from nucleation

sites when labeled at room temperature, and those same

fibers become highly ordered when formed at 37�C. More

evidence is required to determine the ordering nature of

BA-GFP aggregates, but it is intriguing that biarsenical

labeling of a unique tetracysteine sequence can induce

conformations in GFP that have similarities to protein

conformational diseases.

Fusions to the FK506-binding protein (FKBP) and the ra-

pamycin-binding protein (FRB) have found widespread

use as a general method for chemically dimerizing
, September 2007 ª2007 Elsevier Ltd All rights reserved 1037
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engineered proteins in cells upon addition of a divalent li-

gand [26]. Mutation of F36M in FKBP causes spontaneous

homodimerization that reverses upon ligand addition [27].

Four tandem copies of the self-dimerizing F36M mutant of

FKBP and one copy of GFP (>75 kDa total) spontaneously

crosslink and form large, multiprotein aggregates that are

dispersed upon addition of a specific ligand [27], which

has proven useful for sequestering proteins in the secre-

tory pathway, such as insulin, for drug-dependent release

[28]. Aggregation and dispersion depend on the addition

and removal of ligand through incubations and washing

steps. BA-GFP may not be as transferable to live animals,

but it is smaller (�30 kDa), intrinsically fluorescent, cap-

tures weak interaction partners, and is rapidly reversible.

The sequence requirements for Ca dissociation from

RIa have been visualized in living cells using a novel induc-

ible aggregation tag. CHoXAsH-labeled BA-mGFP-RIa

colocalizes in aggregates with mCherry-Ca-independent

cAMP. Based on stop-flow kinetic measurements, the Kd

of cAMP-bound RIa (truncated to remove the dimerization

domain) to Ca is 130 nM [29], several-fold lower than the

estimated cellular PKA concentration of 0.5 mM [1]. Dimers

of the regulatory subunit will likely have a stronger affinity

for Ca, which will further restrict its diffusion. Therefore,

cAMP binding causes a conformational change that

weakens type I PKA holoenzyme association but does

not permit the majority of Ca to visually dissociate at en-

dogenous concentrations [1]. Because BA-GFP requires

several micromolar labeled protein to aggregate, we ex-

clusively capture intact holoenzyme. Clearly, RIa(cAMP)2
retains Ca nearby until sufficient substrate is present to

promote Ca diffusion. The pseudosubstrate inhibitor PKI

causes visible separation of RIa and Ca by trapping Ca

Figure 6. Photo-Reversible Aggregate-Mediated Inactivation

of Nuclear PKA

PKA activity was assayed by FRET using nuclear-localized AKAR2,

and a time point 30 min after forskolin/IBMX stimulation is shown.

BA-mGFP-Ca can be reversibly inactivated by ReAsH aggregation

(p = 0.007). Reactivation by photobleaching ReAsH fully restores

nuclear PKA activity. The activity of nonaggregated, ReAsH-labeled

TC-mGFP-Ca is not significantly affected by photobleaching. Error

bars represent standard error values.
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and blocking reassociation. Although the binding and ki-

netic constants of full-length PKI have not been reported,

the Ki values of PKI1–24, PKI11–30 (A20pS), and kemptide

are 5 nM, 94 mM, and 348 mM, respectively [30, 31]. The

Km for kemptide and PKI14–22 (A20S) are 4.7 mM and

0.11 mM, respectively [31]. Consequently, due to additional

peripheral interactions, the PKI (A20S) is a more efficient

substrate than kemptide. Kemptide has also been shown

to directly compete with RIa(cAMP)2 for binding Ca in vitro

[32]. Altogether, by competing for free Ca, substrate con-

centration is critical for allowing Ca to diffuse away from

RIa. Other mechanisms may also promote diffusion. For

example, formation of type I holoenzyme is critically sensi-

tive to ATP and Mg2+ concentrations [33], which has been

suggested to regulate dissociation in cells. The N terminus

of Ca also can bind AKIP1a, a novel A kinase-interacting

protein that binds Ca and mediates nuclear translocation

[34]. Additional posttranslation modifications, such as

phosphorylation or myristoylation, could also enhance

type I PKA dissociation. Overall, we believe sustained Ca

dissociation from RIa is likely an orchestrated event that

requires highly concentrated substrate and possibly other

cell type-dependent mechanisms.

The inhibitor sequence of RIIa (RRVS) is a substrate for

phosphorylation, whereas the consensus phosphorylation

site of RIa (RRGA) contains an alanine at the P site. This

fundamental difference changes type II PKA holoenzyme

dissociation from substrate regulation to self-regulation

by autophosphorylation. Phosphorylation of RIIa has

been extensively studied and is known to weaken the

affinity of cAMP-bound RIIa for Ca to approximately 6–

10 mM in vitro [35, 36]. This value fits our observations,

as we could only see complete dissociation in cells weakly

expressing BA-mGFP-Ca and mCherry-RIIa, in which

protein concentrations were probably low mM. Phosphor-

ylation of RIIa is an essential step in Ca dissociation, ex-

emplified by inhibition of dissociation by the Ser-to-Ala

P site mutation, and the enhanced dissociation by the

Ser-to-Glu P site mutation. Overall, colocalization of type

II PKA holoenzyme with phosphatases should enhance re-

association by allowing the inhibitor domain to reassoci-

ate with Ca. Also, because AKAPs concentrate type II

PKA holoenzyme to levels approaching the Kd, they may

localize activity by decreasing dissociation and diffusion.

AKAPs are known to localize PKA holoenzyme to spe-

cific subcellular environments to target specific substrates

[2]. Using simple fluorescent protein fusions, we recapitu-

lated our coaggregation results by colocalizing PKA holo-

enzyme to the surface of mitochondria with DAKAP1a. RIa

failed to release Ca upon forskolin stimulation, whereas

RIIa-bound Ca fully dissociated. Based on the Kd of

cAMP-bound type I holoenzyme in vitro, it is reasonable

to assume that holoenzyme does reassociate when bound

to cAMP. Therefore, AKAP tethering could focus kinase

activity on a limited pool of substrates while sequestering

type I PKA from leaving the local environment, especially

after transient physiological stimulation. Interestingly,

tethering PKA to the outside of mitochondria reduces

the phosphorylation of diffuse substrates. Either AKAR2
07 Elsevier Ltd All rights reserved
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Figure 7. DAKAP1a Localization and Activity of PKA Isoforms
(A) Cells weakly expressing mGFP-Ca (495/10 nm, 505 nm dichroic, 535/25 nm), mCherry-RIa, and DAKAP1a-mCerulean localize type I holoenzyme

to mitochondria under basal conditions. DAKAP1a-mCerulean and mCherry-RIa colocalize to mitochondria with mGFP-Ca under all tested condi-

tions (not shown). Forskolin/IBMX stimulation has no effect on mGFP-Ca localization as observed 10 min poststimulation in 14 out of 14 cells tested.

The scale bars represent 10 mm.

(B) Type II PKA holoenzyme diffuses from mitochondria following cAMP stimulation. Cells weakly expressing mGFP-Ca, mCherry-RIa, and DA-

KAP1a-mCerulean lead to overlap of all three channels under basal conditions. Forskolin/IBMX stimulation led to release of mGFP-Ca from mitochon-

dria, specifically in low-expressing cells in 12 out of 12 cells tested.

(C) AKAR2 has no effect on DAKAP1a-localized type I PKA holoenzyme. Cells coexpressing DAKAP1a, RIa, mCherry-Ca (580/20 nm, 600 nm

dichroic, 653/95 nm), and AKAR2 were imaged. Untargeted AKAR had no effect on type I PKA separation in 15 out of 15 cells tested.

(D) Localized substrate enhances mCherry-Ca release from DAKAP1a localization. Cells coexpressing DAKAP1a, RIa, mCherry-Ca, and DAKAP-

AKAR3 were imaged. Targeting the AKAR3 to the surface of mitochondria with a 15 amino acid DAKAP-targeting motif efficiently colocalizes type

I PKA holoenzyme and substrate (not shown), and stimulation causes mCherry-Ca release in 18 out of 21 cells tested. The three nondissociated cells

have significantly higher expression levels, which led to mitochondrial clumping.

(E) Correlated ratiometric detection of PKA activation demonstrates Ca release leads to enhanced kinase activity. We observe less than a 25% in-

crease in the maximal ratio change when comparing AKAR2 to AKAR3. DAKAP1a localization of type I PKA holoenzyme (red trace) inhibits free cy-

tosolic kinase activity (p = 5.9 3 10�4) compared to untethered holoenzyme (black trace). Colocalizing both type I PKA holoenzyme and the reporter to

the surface of mitochondria leads to enhanced kinase activation correlated with mCherry-Ca release (green trace). Error bars represent standard error

values.
does not have complete access to DAKAP1a-localized

type I PKA, or substrate cannot efficiently compete

against concentrated RIa. In vitro, increasing substrate

concentration enhances type I PKA activity [32]. This en-

hancement is not allosteric, and can be interpreted as
Chemistry & Biology 14, 1031–104
facilitating diffusion from RIa inhibition. It is paradoxical

why Ca diffuses away from type II holoenzyme but not

type I holoenzyme. RII is extensively targeted by numer-

ous AKAPs to precise subcellular localizations, whereas

RI is more dynamic and has fewer specific AKAPs.
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One solution to this paradox may lie in the composition

of the AKAP protein complex. Whereas type I PKA holoen-

zyme is localized by pseudosubstrate tethering, type II

PKA is especially sensitive to phosphatase effects. RIIa

is known to enhance its affinity to certain AKAPs following

S99 phosphorylation [37], but AKAP-dependent changes

in Ca affinity are not known. DAKAP1a scaffolds both

PKA and PP1 [38], suggesting a biologically important in-

terplay, possibly involving suppression of RIIa by PP1-

mediated dephosphorylation. AKAP79, an RII-specific

AKAP, is colocalized with calcineurin [39], a phosphatase

that can dephosphorylate RII. Therefore, one role of PP1

and calcineurin may be to regulate type II PKA activity di-

rectly by controlling dissociation and reassociation. Al-

though in our experiments DAKAP1a-localized RIIa failed

to retain Ca following prolonged cAMP elevation, more

physiological cAMP stimulation or coexpression of addi-

tional phosphatases may lead to a different outcome.

Therefore, AKAPs may prevent Ca diffusion by recruiting

phosphatases that act to reverse RIIa autophosphoryla-

tion, thereby effectively tethering Ca locally. In future ex-

periments, it will be important to observe coaggregation

or colocalization to see whether other RII-specific AKAPs

release Ca, and whether proteins localized to the AKAP

scaffold enhance or inhibit Ca diffusion.

In summary, we have characterized BA-GFP as a genet-

ically encoded, dye-dependent reversible aggregator and

demonstrated several applications such as induced coloc-

alization and protein inactivation. By applying this technol-

ogy to study PKA dissociation, we visualized unique re-

quirements that distinguish PKA holoenzyme subtype

activation mechanisms in living cells. Our data strongly

suggest substrate-mediated regulation of type I PKA,

and regulation by autophosphorylation of type II PKA.

BA-GFP is ideal for studying weak interactions that change

from nanomolar to micromolar affinity in cells, as fluores-

cent detection generally requires micromolar levels of

overexpression. Furthermore, the temperature-dependent

morphologies of BA-GFP aggregation are unique, and may

be valuable for understanding the mechanism of many

pathologically relevant protein-misfolding diseases.

SIGNIFICANCE

Despite decades of research, visualizing PKA activa-

tion in cells has been technically challenging and often

misleading. Fluorescently tagged regulatory and cata-

lytic PKA subunits can visualize cAMP responses by

FRET as a function of conformational changes. Un-

fortunately, these techniques do not directly demon-

strate separation, and only report a change in the dis-

tance and orientation of the two chromophores.

Although much has been done in vitro to understand

the mechanisms of PKA dissociation, the cellular con-

text of Ca dissociation of each PKA isoform has not

been visualized. The tetracysteine sequence YR-

ECCPGCCMWR fused to the N terminus of GFP (BA-

GFP) causes rapid protein aggregation upon ReAsH

labeling in cells. Fusion of this tag to the N terminus
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of various proteins leads to dye-dependent aggrega-

tion as temperature-dependent photo-reversible pre-

cipitates. Correlated light and electron microscopy

reveal that ReAsH-labeled BA-GFP aggregates are

composed of disordered BA-GFP polymers that align

into larger fibers at higher labeling temperatures. Us-

ing the BA-GFP dye-triggered aggregation system,

weak interactions between tagged R and C subunits

were trapped in highly visible puncta, providing a sim-

ple assay to study the mechanisms of C separation.

Type I PKA holoenzyme remains intact following max-

imal cAMP stimulation, whereas type II PKA rapidly

dissociates. Targeting PKA holoenzyme to the outside

of mitochondria by coexpression of DAKAP1a con-

firmed the coaggregation results and demonstrated

that type I PKA is only effectively separated by both

localized substrate and cAMP stimulation. Overall,

type I holoenzyme separation is substrate dependent,

whereas type II PKA separation requires autophos-

phorylation. Additionally, PKA activity can be inhibited

by aggregation and restored by biarsenical photo-

bleaching. These observations are central to under-

standing AKAP-mediated targeting, and point to the

presence of phosphatases and substrate local con-

centration as a mechanism for maintaining localiza-

tion. Furthermore, a novel approach is introduced for

visualizing and manipulating protein interactions by

dye-dependent aggregation.

EXPERIMENTAL PROCEDURES

Cell Culture and Biarsenical Labeling

HeLa cells were cultured in Dulbecco’s modified Eagle’s media sup-

plemented with 10% fetal bovine serum, 100 units/ml penicillin G,

and 100 mg/ml streptomycin. Cells were transfected using Fugene

HD (Roche) 2 days prior to imaging, and starved in serum-free media

overnight. Biarsenical labeling was performed with 1.0 mM ReAsH or

2.5 mM CHoXAsH with 10 mM ethanedithiol (EDT) in Hanks balanced

saline solution supplemented with 2 g/l glucose and 20 mM HEPES

for 60 min at room temperature or in serum-free media at 37�C. Cyclic

AMP was elevated by addition of 10 mM forskolin (Sigma) and 100 mM

IBMX (Sigma) simultaneous with biarsenical addition. Using purified

recombinant standards for normalization by western blot, HeLa cells

express endogenous RIa and RIIa at relatively equal levels. Biarseni-

cal-stained cells were washed with 0.25 mM 2,3-dimercaptopropanol

(BAL) to remove nonspecific ReAsH staining. BA-GFP protein was

purified from overexpressing HEK293 cells and labeled in vitro as

previously described [13].

Fluorescence Microscopy

Epifluorescence microscopy was performed on a Zeiss Axiovert 200M

microscope with a cooled charge-coupled device camera (Roper

Scientific) using a computer-controlled MS-2000 (Applied Scientific In-

strumentation) automated stage, controlled by METAFLUOR 6.1 soft-

ware (Universal Imaging) or Slidebook 4.1 (Intelligent Imaging Innova-

tions). All imaging experiments were performed at room temperature

with a 403 1.3 NA oil objective, sometimes with 2.53 optivar magnifi-

cation for an effective 1003 magnification. To reverse ReAsH

BA-mGFP aggregation, ReAsH was photobleached with 580/20 nm,

0.67 W/cm2 for 30 s. Bleached regions were analyzed simultaneously

with multiple nonbleached regions in BA-mGFP-RIa and BA-mGFP-

Ca ReAsH-stained cells.
007 Elsevier Ltd All rights reserved
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Correlated Light and Electron Microscopy

ReAsH-labeled cells were fixed in 2% glutaraldehyde in sodium caco-

dylate buffer (0.1 M, pH 7.4) at 4�C for 20 min. Cells were then rinsed in

cacodylate buffer and treated for 5 min with blocking buffer: 10 mM

KCN, 10 mM aminotriazole, 0.01% hydrogen peroxide, 50 mM glycine

in 0.1 M cacodylate buffer. Images of cells were recorded using a Bio-

Rad MRC-1024 confocal system on a Zeiss Axiovert 35M microscope

using 568 nm laser excitation and a 633 1.4 NA objective. The buffer

was replaced with oxygenated buffer containing 1 mg/ml DAB, and

photoconversion was performed by using intense illumination (75 W

xenon lamp without neutral density filters) focused through the micro-

scope objective using a standard rhodamine filter set (535/50 nm,

580 nm dichroic, 590 nm long pass). After a brownish reaction product

replaced the fluorescence (8–10 min), the cells were rinsed in cacody-

late buffer and postfixed in 2% osmium tetroxide for 1 hr at 4�C. The

cells were then dehydrated in ethanol and infiltrated in Durcupan

ACM resin (Electron Microscopy Sciences) and polymerized at 60�C.

Ultrathin sections were prepared and imaged using a JEOL 1200

electron microscope at 80 kev.

PKA Activity Measurements

Serum-starved HeLa cells expressing AKAR2, AKAR2-NLS, or DA-

KAP-AKAR3 (420/20 nm, 450 nm dichroic, CFP: 475/40 nm and

YFP: 535/25 nm) were imaged every 3 min (unless otherwise noted)

and stimulated with 25 mM forskolin and 100 mM IBMX. Twelve or

more regions from a single dish were imaged in parallel using a com-

puter-controlled stage. Cells with similar medium levels of AKAR2 or

AKAR2-NLS expression were analyzed for each condition and ratios

were calculated by dividing background-subtracted YFP-FRET by

CFP emission and normalized to basal starting ratio.

Supplemental Data

Supplemental Data include five figures, one table, Supplemental Ex-

perimental Procedures, and two movies, and are available at http://

www.chembiol.com/cgi/content/full/14/9/1031/DC1/.
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