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Postnatal bilateral whisker trimming was used as a model system to
test how synaptic proteomes are altered in barrel cortex by sensory
deprivation during synaptogenesis. Using quantitative mass spec-
trometry, we quantified more than 7,000 synaptic proteins and
identified 89 significantly reduced and 161 significantly elevated
proteins in sensory-deprived synapses, 22 of which were validated
by immunoblotting. More than 95% of quantified proteins, in-
cluding abundant synaptic proteins such as PSD-95 and gephyrin,
exhibited no significant difference under high- and low-activity
rearing conditions, suggesting no tissue-wide changes in excitatory
or inhibitory synaptic density. In contrast, several proteins that
promote mature spine morphology and synaptic strength, such as
excitatory glutamate receptors and known accessory factors, were
reduced significantly in deprived synapses. Immunohistochemistry
revealed that the reduction in SynGAP1, a postsynaptic scaffolding
protein, was restricted largely to layer I of barrel cortex in sensory-
deprived rats. In addition, protein-degradation machinery such as
proteasome subunits, E2 ligases, and E3 ligases, accumulated
significantly in deprived synapses, suggesting targeted synaptic
protein degradation under sensory deprivation. Importantly, this
screen identified synaptic proteins whose levels were affected by
sensory deprivation but whose synaptic roles have not yet been
characterized in mammalian neurons. These data demonstrate the
feasibility of defining synaptic proteomes under different sensory
rearing conditions and could be applied to elucidate further molec-
ular mechanisms of sensory development.
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Sensory information is encoded in the brain by activation of
speci� c neuronal circuits that operate via chemical synapses.

Important sensory experiences are stored by strengthening activated
synapses in the circuit, a process known as “experience-dependent
plasticity” (1). When animals are deprived of sensory experience
during development, for example, by trimming rodent whiskers
from birth to 30 d after birth, synaptic strength and mature synaptic
morphology are attenuated, suggesting that the low activity in the
deprived circuits interferes with normal development (2–7). How-
ever, the molecular changes that alter these synaptic properties in
response to experience remain unclear. Synaptic activation has been
shown to promote regulated and highly localized effects on synaptic
proteins such as local translation, recruitment, and targeted deg-
radation (8–11), and this spatiotemporal control of protein avail-
ability is required for long-term plasticity and synaptic maturation,
which are fundamental in memory formation and storage and ul-
timately for an organism’s survival (12–14). The need for highly
controlled protein availability is highlighted in studies of neuro-
logical diseases, which often result from the disruption of protein
availability at the synapse (15–17). Therefore, it is clear that local
synaptic protein dynamics are critical for promoting changes in
synaptic morphology and strength to stabilize the structure appro-

priate to the activation levels; however, it remains unclear which
synaptic proteins are critical for endowing these synaptic properties.
The present study used quantitative MS-based proteomics to

search for synaptic proteins whose levels are affected by sensory
deprivation during development. To generate synaptosome sam-
ples under conditions of different synaptic input levels, we isolated
synaptosomes from barrel cortex in mice that had undergone daily
bilateral whisker trimming (sensory-deprived mice) or whisker
brushing (sensory-normal mice) from postnatal day (P)4–P30. The
murine vibrissa trigeminal system offers several advantages for
studying changes in synaptic properties caused by enhanced or
suppressed sensory experiences. First, sensory experience can be
manipulated without physical damage to peripheral sensory axons
so that any effects can be ascribed to changes in neuronal acti-
vation. Second, primary somatosensory (S1) cortex can be local-
ized anatomically on the basis of surface vasculature, and its
distinct barrel cytoarchitecture can be distinguished easily in cor-
tical tissue samples (4, 18). Third, vibrissa function is critical to
rodent navigation through environments, and there is a rich lit-
erature that documents structural and functional effects of varied
sensory experience on cortical development (1, 3, 5, 6). Although
a proteomics study of crude synaptosomes may be ambitious be-
cause of the heterogeneity of both barrel cortex tissue and synaptic
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structure, we predict that our approach can reveal regulated
proteins with con� dence.
In this study, barrel cortex synaptosomes from 15N-enriched

mice served as internal standards for direct comparison of the
experimental groups. 15N labeling of rodents facilitates accurate,
proteome-wide quantitative analysis of long-lived proteins and
synapse-wide changes during development (19–21). Out of more
than 7,000 quanti� ed proteins, we identi� ed 89 signi� cantly re-
duced and 161 signi� cantly elevated proteins in sensory-deprived
synapses, and we validated 22 of these proteins by immunoblotting
and one by immunohistochemistry. Proteins that were signi� cantly
down-regulated in sensory-deprived animals may represent the
most attractive candidates for degrading synaptic properties such
as synaptic strength and spine maturity in synapses receiving re-
duced input activity. Postsynaptic proteins that promote spine
enlargement and synaptic strength, two characteristics that pro-
mote synaptic maturation and stability, also are of great interest.
Importantly, we identi� ed many less-characterized synaptic pro-
teins that were altered by sensory experience, and this dataset will
provide interesting future targets for understanding the molecular
basis of mammalian experience-dependent plasticity.

Results
We set out to identify the synaptic proteins regulated by devel-
opmental sensory experience in mouse barrel cortex using quan-
titative 2D liquid chromatography and tandem mass spectrometry
(LCLC-MS/MS). The synapses in� uenced by sensory deprivation
are thought to be newly formed synapses that fail to become
strong and stable. We reduced activity in barrel cortex by trimming
all whiskers daily from P4, near the beginning of synaptogenesis,
to P30, well after the critical window for synaptic plasticity (4, 22),
to produce barrel cortex synapses that develop under low-activity
(sensory-deprived) conditions (Fig. 1A). In a second, sensory-
normal group of animals, all whiskers were brushed daily to con-
trol for animal handling during whisker manipulation (Fig. 1A).
To ensure broad synaptic proteome coverage, we prepared barrel
cortex synaptosome fractions for analysis. The reduced level of

complexity of synaptosomes allows the LCLC-MS/MS method to
analyze nearly all proteins present in the sample (23). We used
a third group of animals, sensory-normal mice labeled by 15N
(Fig. 1A), as an internal standard and performed relative protein
quantitation for each MS run using a ratio-of-ratios approach (24).
Barrel cortex tissue was isolated from whole cortex using a tis-

sue puncher. The punched tissue was considered acceptable for
use in the study if the remaining cresyl-violet–stained cortex
contained few large sensory barrels around the punch and mostly
small barrels that receive input from small nasal whiskers rostral to
the punch (Fig. 1B). Coronal sections through an acceptable
punched barrel cortex sample indicated that the cortical layer
architecture imaged by cresyl violet (Fig. 1C, Left) and the barrel
architecture imaged by immunostaining for a glutamate trans-
porter (VGlut2; Fig. 1C, Right) remained intact in the punched
tissue. Homogenates from acceptable punched barrel cortex
samples were mixed 1:1 (14N/ 15N) early in the work � ow to min-
imize any potential bias introduced during synaptosome prepara-
tion, sample processing, or MS analysis. Three biological replicates
from three different mice were generated for the trimmed and the
brushed experimental groups. Synaptosomes prepared from barrel
cortex demonstrated enrichment for synaptic proteins by immu-
noblotting and preservation of both presynaptic and postsynaptic
structures by electron microscopy (Fig. 1D).
In each synaptosome sample we identi� ed ∼3,500 proteins

from ∼35,000 peptides at a protein false-discovery rate (FDR)
<1%. The total number of proteins identi� ed throughout all
samples was 7,134 proteins from 60,962 total peptides. We then
quanti� ed about 75% of the identi� ed peptides based on con� -
dence measurements (see Analysis of Tandem Mass Spectra sec-
tion in Materials and Methods for details). Proteins of interest
were identi� ed by � rst generating a 14N-trim/15N-brush (trim-
med) or 14N-brush/15N-brush (brushed) ratio to generate a � nal
14N-trim/14N-brush “ratio of ratios” (Fig. 2A). We compared the
three “trimmed” with the three “brushed” datasets to calculate
fold change and signi� cance by ANOVA analysis and graphed
these results as a volcano plot (Fig. 2B). Eighty-nine proteins
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Fig. 1. Method used to isolate synapses after normal and
reduced input activity in the barrel cortex during postnatal
development. (A) Experimental scheme for identifying and
quantifying proteins up- or down-regulated in sensory-de-
prived compared with sensory-normal barrel cortices (blue)
by LCLC-MS/MS using 15N mice (red) as an internal standard.
(B) Image of a 100-μm-thick tangential section of punched
cortex showing the location of a barrel punch with the
resulting absence of large barrel architecture in the sur-
rounding cortex, which would identify the corresponding
punch as acceptable for inclusion in the experiment. (Inset) A
100-μm-thick section of the corresponding barrel punch
containing many large barrel structures. (C) Coronal section
of an acceptable punched barrel cortex sample imaged by
cresyl violet to verify intact columnar cortical cytoarchitecture
(Left) and by immunoreactivity for the glutamate transporter
(VGlut2) to outline the barrel structures (Right). (D) Electron
micrograph of a synaptosome preparation demonstrating
the presence of presynaptic (red asterisk marks a cluster of
synaptic vesicles) and postsynaptic structures.
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were signi� cantly reduced (Table S1), and 161 proteins were
signi� cantly elevated (Table S2) by at least 1.2-fold in trimmed
with respect to brushed samples. Of these, only a few were al-
tered by more than 1.5-fold (nonbold text in Fig. 2B Inset and
light gray � ll in Table 1) or by 2.0-fold (bold text in Fig. 2B Inset
and dark gray � ll in Table 1). Here, we focus our analysis on the
synaptic proteins that were signi� cantly down-regulated in sen-
sory-deprived animals, suggesting their enrichment by normal
activity in stable synapses (green points in Fig. 2B Inset, Table 1,
and bold text in Table S1, Left Column). Table 1 lists synaptic
proteins that were signi� cantly reduced in deprived synapses,
grouped by subsynaptic location, and reports their corresponding
International Protein Index (IPI) number, ratio of average trim-
med:brushed protein levels (T/B), number of quanti� ed peptides
(14N/15N pairs) from which the average was calculated, ANOVA
P value, and previous studies that have demonstrated the effects
of down-regulation or up-regulation of the protein on spine
morphology, neurite morphology, synaptic transmission, and/
or behavior.
Of the 250 proteins that exhibited signi� cant differences (up

or down) between barrel synaptosomes in trimmed and brushed
mice, only four also were changed signi� cantly in whole-cere-
bellum synaptosomes (Tables S1 and S2, light gray � ll), in-
dicating that these reported changes demonstrated a high level
of speci� city for the barrel cortex. Cerebellum results were
graphed as a volcano plot, and synaptic proteins listed in Table 1
are indicated as red points in the graph (Fig. 2C). Notably, only
one protein (GluA1) in Table 1 also was reduced signi� cantly in
cerebellum, and it was reduced by a lesser extent in cerebellum
than in barrel cortex. To verify the MS data with an independent
technique, semiquantitative immunoblotting was performed with
22 antibodies that recognized distinct bands at the predicted
molecular weight using β-actin staining for normalization (Fig.
3). All 22 immunoassays reported protein levels in trimmed vs.
brushed samples (19 decreased, 2 unchanged, and 1 increased in

trimmed) in concordance with the MS data, thereby indicating
few false-positive identi� cations.
In intact brain, synaptic protein expression is not limited to

synapses, because these proteins are synthesized and traf� cked
throughout the neuron, and experience-dependent alterations
in the laminar localization of synaptic proteins in intact cortex
rarely have been observed (67). Therefore, we tested whether the
quantitative alternation in synaptic protein expression could
translate to altered spatial localization in intact brain. We com-
pared SynGAP1 protein distribution between sensory-deprived
(trimmed) and sensory-normal (brushed) barrel cortex sections
(Fig. 4). SynGAP1 is a postsynaptic density protein that exhibits
nearly equimolar abundance in forebrain as PSD-95 (68), and loss
of SynGAP1 through targeted mutation is deleterious to barrel
cortex formation during development (69) and results in learning
de� cits (59, 70). Furthermore, SynGAP1 mRNA has been shown
previously to be spatially concentrated in layers II and V of P35
mice (69). In sensory-normal (brushed) barrel cortex, SynGAP1
protein immunoreactivity was concentrated in layer I, whereas
layers II–VI were stained diffusely except for faint delineation of
cortical barrels in layer IV and slightly higher staining in layer Va
(Fig. 4B). Despite the high level of mRNA expression in neuronal
soma demonstrated previously (69), neuronal soma generally were
poor in SynGAP1 protein immunoreactivity with only scattered
SynGAP1-positive neuronal soma visible in layer V. Sensory-
deprived (trimmed) barrel cortex also showed diffuse staining in
layers II–VI; however the high SynGAP1 immunoreactivity in
layer I was not observed in sensory-deprived cortex (Fig. 4A).
When SynGAP1 staining was represented as a ratio of layer I
(Fig. 4C) to layer IV (de� ned by VGlut2 immunoreactivity of
barrel afferents; Fig. 4D), this ratio was signi� cantly higher in
sensory-normal barrel cortex (Fig. 4E). These data indicate that
the signi� cant reductions in protein expression detected in sen-
sory-deprived synapses by proteomics and immunoblotting
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Fig. 2. Quantification method for synaptic proteins in sen-
sory-deprived and sensory-normal synapses. (A) Schematic
for quantifying protein levels by LCLC-MS/MS using GluA1 as
an example. Reconstructed peptide chromatographs con-
taining both 14N and 15N species were used to calculate trim/
brush (trimmed, Upper) or brush/brush (brushed, Lower) ra-
tios. Protein ratios are generated from mean peptide ratios
for each biological replicate. The mean protein ratio over all
three biological replicates was used to generate a final trim/
brush ratio of ratios. The indicated result is a single biological
replicate. (B) Volcano plot of the complete identified and
quantified protein cohort from barrel cortex synaptosomes
by LCLC-MS/MS, graphed as Log2 fold change trim/brush vs.
-Log10 ANOVA P value. (Inset) Proteins that satisfied both
the statistical cutoff (ANOVA P < 0.05) and were reduced by
≥20% in deprived synapses are shown as unlabeled points
(>1.2-fold reduced), in regular text (>1.5-fold reduced), or in
bold text (>2.0-fold reduced). Significantly reduced synaptic
proteins are represented by green points. (C) Volcano plot of
all proteins quantified from whole-cerebellum synaptosomes
by LCLC-MS/MS with the statistical cutoff (ANOVA P < 0.05)
and ≥20% reduction cutoff shown. Synaptic proteins that
were significantly reduced in sensory-deprived barrel cortex
synapses (green points in B, listed in Table 1) are indicated as
red data points. Note that 32 of the 55 synaptic proteins that
were significantly reduced in barrel cortex (Table 1) also
were identified in cerebellum, and only one was significantly
reduced in cerebellum also.
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translated to the intact cortex as a change in the laminar ex-
pression of this synaptic protein.
One notable class of proteins that was accumulated signi� cantly

in deprived synapses was the protein-degradation machinery
(Table 2 and bold text in Table S2, Left Column), including
proteasome subunits (Psmb7, Psmd1, and Psmd11), E2 ligases
(Ube2o and Ube2l3), and E3 ligases (Ubr4 and Nedd4). Table 2
lists proteasome proteins that were signi� cantly elevated in de-
prived synapses and reports their corresponding IPI number,
ratio of average trimmed:brushed protein levels (T/B), number
of quanti� ed peptides (14N/15N pairs) from which the average
was calculated, ANOVA P value, and previous studies that have
demonstrated the effects of down-regulation or up-regulation of
the protein on spine morphology, neurite morphology, synaptic
transmission, and/or behavior.

Discussion
Previous attempts to identify and characterize key synaptic pro-
teins that endow synaptic stability have relied heavily on up-reg-
ulation or down-regulation of individual candidates to estimate
effects on synaptic strength or maturity. The idea of an unbiased
search for proteins up-regulated as a result of sensory stimulation
is not new, but previous attempts based on ex vivo radiolabeling
analyzed by gel electrophoresis (73) were handicapped by low
sensitivity, low resolution, and inability to identify the molecules
showing alterations. Heavy-stable isotopic labeling with MS-based
identi� cation and quanti� cation (74) has provided a powerful and
nearly unbiased strategy for identifying proteins that are enriched
in activated synapses in vitro. Now stable isotopic labeling of
amino acids in mammals (SILAM) is demonstrated (75), and this
method is essential for investigating synaptic protein responses to
experience-dependent plasticity in vivo. The sensitivity of current
MS-based techniques still requires sampling an entire heteroge-
neous brain region instead of a single cell or synapse (76).
Therefore, the challenge in identifying synaptic proteins that en-
dow synaptic stability by MS-based proteomics is the availability of
whole-tissue samples that can be manipulated before analysis.
It is well established that diminishing sensory activity in par-

ticular regions of the brain during synaptogenesis and maturation
can alter synaptic properties drastically throughout that tissue.
Indeed, whisker trimming is widely used to reduce sensory input to
the barrel cortex, and previously this technique was shown to af-

fect synaptic morphology and transmission in this tissue (77, 78).
Using quantitative MS-based techniques and using 15N mice as an
internal standard, synaptic protein pro� les of barrel cortex in
sensory-deprived mice that had undergone daily bilateral whisker
trimming were compared with pro� les in sensory-normal mice
receiving bilateral whisker brushing. Results from this in vivo
proteomics screen were used to search for synaptic proteins that
were reduced in deprived vs. normal synapses, thereby predicting
enrichment in stable synapses that receive normal sensory input.
We identi� ed proteins that were both up- (161 proteins) and
down- (89 proteins) regulated in sensory-deprived synapses and
veri� ed 20 of these proteins by immunochemistry (Figs. 3 and 4),
thereby supporting the conclusion that the MS data are accurate.
As expected, synaptosome samples contained proteins from both
excitatory and inhibitory synapses, such as glutamate and GABA
receptors, respectively (Table 1), thereby indicating the inclusion
of both classes of synapses in our analysis. We focus our discussion
on the synaptic proteins that were signi� cantly down-regulated in
sensory-deprived animals (Fig. 2B, Inset and Table 1), suggesting
their activity-based enrichment in stable synapses.
More than 95% of quanti� ed proteins, including abundant

synaptic proteins such as PSD-95 and gephyrin, exhibited no sig-
ni� cant difference under high- and low-activity rearing conditions,
suggesting no tissue-wide changes in excitatory or inhibitory syn-
aptic density. Synaptic proteins that were reduced signi� cantly in
deprived barrel cortex synapses (Table 1) represent several classes
of synaptic proteins, such as receptors, channels, transmembrane,
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secreted, postsynaptic density, downstream signaling, presynaptic
vesicle, and cytoskeletal proteins (Fig. 5). Several proteins that
were statistically down-regulated in deprived synapses have been
shown previously to promote large, mushroom-shaped spines,
which is a de� ning morphological feature of mature, stable syn-
apses (for references, see Table 1). Among these proteins are
many postsynaptic membrane-associated proteins (GluA2, GluN1,
Flotillin1, ICAM5, and Teneurin2), postsynaptic density proteins
(GKAP, kalirin, Sap102, Shank1, and SynGAP1) that scaffold
membrane signals intracellularly, and three unique postsynaptic
catenins (α2, β1, and δ2) that link the scaffold to the actin net-
work. Proteins that modulate neurite morphology (for references,
see Table 1) and affect behavior or performance in memory tasks
in vivo (for references, see Table 1) also were identi� ed as reduced
in deprived synapses, although many of these proteins do not show
a clear molecular role in synaptic stability. We predict that these
less-characterized synaptic proteins will be interesting future tar-
gets to elucidate further the molecular dynamics that give rise to
synaptic stability.
Many proteins that promote synaptic strength, another key de-

� ning feature of mature and stable synapses, were also statistically
down-regulated in sensory-deprived synapses (for references, see
Table 1). Among these proteins are several excitatory post-
synaptic ionotropic glutamate receptors (GluA1, GluA2, GluN1,
GluN2A, GluN2B). GluA3 also was identi� ed as down-regulated
but did not meet the statistical guidelines. TARP-γ3, a known
GluA auxiliary subunit, also was identi� ed in our screen as down-
regulated with deprivation. Furthermore, GluA1 exhibited one

of the largest contrasts between sensory-deprived and normal
synapses, as expected based on previous reports demonstrating
that whisker experiences drive GluA1 into L4 to L2/3 synapses to
give rise to experience-dependent synaptic plasticity (79). A
GABA receptor (GABAA-α2) also was identi� ed as down-regu-
lated, suggesting that inhibitory synaptic signaling also was affected
by sensory deprivation. Although glutamate and GABA receptors
were signi� cantly down-regulated in deprived synapses, PSD-95
and gephyrin, the postsynaptic scaffolding proteins in glutamatergic
and GABAergic synapses, respectively, remained unchanged, sug-
gesting that these changes were not simply a result of gross changes
in glutamatergic and GABAergic synaptic density. However, as
suggested previously (77, 78, 80, 81), it is possible that local changes
in synaptic density may have been diluted out in our whole-cortex
samples. Future studies with different techniques would be re-
quired to ascertain to what extent changes in expression result from
changes in synapse number vs. changes in expression levels per
synapse. Either way, circuitry is altered.
Although most proteins identi� ed as reduced in deprived syn-

apses have been implicated previously in stabilizing synapses,
SynGAP1 has been implicated previously in spine elimination, and
its down-regulation has been shown to enhance synaptic strength
(59). Therefore, we would not have predicted this protein to be
reduced in deprived synapses, and we immunostained for this
protein in sensory-deprived and normal barrel cortex to determine
where this protein exhibited reduced levels. By immunohisto-
chemistry, we demonstrated that sensory deprivation by bilateral
whisker trimming altered the laminar distribution of SynGAP1
in the barrel cortex because only layer I barrel cortex exhibited
signi� cantly lower SynGAP1 protein levels in sensory-deprived vs.
sensory-normal cortex (Fig. 4). These data suggest that the re-
duction in SynGAP1 protein levels detected by MS and immu-
noblotting of synaptosomes from whole barrel cortex resulted
mostly from reductions in layer I spines. Whisker trimming pre-
viously has been shown to reduce spine elimination rates in layer I
barrel cortex (82), and that � nding is consistent with the reduction
in SynGAP1, which is implicated in spine elimination in this re-
gion. Because reducing SynGAP1 levels in neurons has been
shown previously to stabilize the actin network in spines, leading
to activity-independent spine stability (59), our data suggest that
layer I spine stabilization as a result of sensory deprivation could
be caused, in part, by reduced SynGAP1 protein levels in this
region and that these layer I synapses could be stabilized in-
dependent of activity levels. Therefore, in addition to its well-
characterized role in cognition (83, 84), SynGAP1 appears to play
a prominent role in experience-dependent plasticity. Furthermore,
the reduction of SynGAP1 in the spines of layer I suggest that
SynGAP1 may be an attractive candidate for future in vivo optical
imaging studies of somatosensory plasticity. Further investigations
to identify the synaptic partners of the layer I spines exhibiting
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Fig. 5. Summary of the identified pre- or postsynaptic location, protein
family, and presumed function of all identified synaptic proteins that were
significantly down-regulated in sensory-deprived barrel cortex synapses and
listed in Table 1. The effects of sensory deprivation clearly are not restricted
to one category of proteins.

Table 2. Proteasomal proteins significantly up-regulated in sensory-deprived barrel cortex synapses

Proteasomal protein T/B (%) P Average 14N/15N pairs Up/down-regulation at the synapse IPI

Psmb7 144 0.002 4 IPI00136483.1
Psmd1 137 0.039 9 IPI00267295.5
Ubr4 131 0.028 10 (71)* IPI00845523.1
Ube2o 126 0.038 7 IPI00453803.5
Ube2l3 126 0.015 7 IPI00128760.1
Psmd11 124 0.029 7 IPI00222515.5
Nedd4 122 0.046 3 (72)† IPI00462445.2

Proteins are grouped by subsynaptic location with their corresponding IPI number. The ratio of average trimmed:brushed protein
levels (T/B), number of quantified peptides (14N/15N pairs) from which the average was calculated, and ANOVA P value for each protein
are indicated.
*Study demonstrated the effects of down-regulation or up-regulation of this protein on neurite morphology.
†Study demonstrated the effects of down-regulation or up-regulation of this protein on spine morphology.
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reduced SynGAP1 levels after sensory deprivation would provide
further insight into local organization of sensory information.
We identi� ed many synaptic proteins that have not received

attention in the mammalian nervous system but show clear con-
tributions to synapse dynamics in vivo in Drosophila or in vitro in
neuroblastoma cell lines. For instance, Fry has been shown to be
essential for the organization of Drosophila sensory neuronal
dendrites to cover the entire receptive � eld without redundancy
by avoiding homologous dendritic branches (25). Although Fry
expression has been demonstrated in embryonic mammalian
brain tissue (85), the role of Fry in mammalian systems has not
been studied. Teneurins are required for transsynaptic signaling
and organization of the synapse cytoskeleton in Drosophila neu-
romuscular synapses and olfactory receptor neurons (33, 86).
Recently, mammalian teneurins have been shown to be latro-
philin (Lphn) receptors, which are known to mediate the massive
synaptic exocytosis caused by the black widow spider venom
α-latrotoxin and which also were identi� ed as reduced in de-
prived synapses (48, 87). Prickle2 has been shown to regulate
neurite formation and outgrowth, but only in neuroblastoma cell
lines (55). Further investigations into these proteins in primary
mammalian synapses will provide key insights into mechanisms
that lead to synaptic maturation and stability.
One notable class of proteins that was accumulated signi� cantly

in deprived synapses was the protein-degradation machinery (Ta-
ble 2), including proteasome subunits (Psmb7, Psmd1, and
Psmd11), E2 ligases (Ube2o and Ube2l3), and E3 ligases (Ubr4
and Nedd4). Ubr4 has been shown previously to stabilize neuronal
processes by stabilizing microtubules, and knockdown of this
protein leads to thin, crooked neurites (71). Nedd4 has been im-
plicated previously in the ubiquitination of GluA1, leading to its
internalization and thereby reducing synaptic strength (72, 88).
Therefore, the up-regulation of Nedd4 in these deprived synapses
may be implicated in the observed reduction in synaptic GluA1
(Table 1), leading to weaker synapses. Up-regulation of the pro-
tein-degradation pathway in sensory-deprived synapses suggests
that there is greater turnover of synaptic proteins. Together with
the data from proteins down-regulated in deprived synapses, these
data suggest that sensory deprivation may induce long-term de-
pression at synapses in the barrel cortex, resulting in weaker syn-
apses and higher synapse elimination rates, as suggested previously
(89). In the future, localizing these changes in protein-degradation
machinery to speci� c regions and speci� c cell types could provide
valuable insight into how synaptic proteins are regulated during
experience-dependent plasticity.
Two popular candidates for protein switches underlying long-

term synaptic plasticity are PKMζ and CPEB3, both of which
are thought to be self-sustaining once activated to set up a local
positive-feedback loop at activated synapses to sustain long-
term strength (90, 91). PKMζ, a splice variant of PKCζ, was not
detected by MS in barrel cortex synapses in the present study,
suggesting that this protein may not be expressed in this region at
this age. MS did detect the α, β, γ, δ, δIV, δV, δVI, δVII, e, θ, and ι
isoforms of PKC, of which only PKCγ showed a difference be-
tween trimmed and brushed animals (Table 1), suggesting that MS
does have enough sensitivity for the related signaling molecules.
CPEB3 was elevated signi� cantly in deprived synapses (Table S2).
However, because the current MS data do not reveal the activa-
tion state of CPEB3 in deprived and normal synapses, it remains
ambiguous whether this protein was repressing or activating local
protein synthesis in synapses from these two groups of animals.
In future MS-based screens, monitoring posttranslational mod-
i� cations could resolve this ambiguity and � nd additional molec-
ular differences between deprived and normal synapses.
The results from this proteomics screen are complementary to

transcriptome investigations such as the recent unbiased screen
for mRNA transcripts enriched in dendrites of the rat hippo-
campus (92). Protein abundance is affected by both synthesis and

turnover and generally cannot be predicted merely from mRNA
levels (93). Our search encompassed both pre- and postsynaptic
compartments in the barrel cortex, was unbiased with respect to
site of protein synthesis, and focused on changes in response to
sensory input, whereas the current transcriptome data focus on
postsynaptically translatable mRNAs and have not yet included
environmental modulation. Nevertheless, the published local
transcriptome (92) includes the mRNAs for 229 of our list of 250
proteins signi� cantly modulated by whisker trimming, a remark-
able concordance suggesting that most proteins whose abun-
dance depends on synaptic activity are indeed locally translated.
Changes in synaptic protein levels have been measured pre-
viously in visual cortex in response to sensory deprivation via
dark rearing (94), but this screen used a different labeling
strategy (iTRAQ), and quanti� ed fewer proteins (467 total).
Only 58 of the 250 proteins we identi� ed as altered by senso-
ry deprivation were quanti� ed in this previous screen, and only
11 were signi� cantly altered in visual cortex Also. Of these
11 proteins, only three were altered by more than 1.2-fold, the
cutoff used in our study, and all three were altered in the same
direction in deprived tissue from both studies, thereby suggesting
partial overlap in synaptic proteins that are affected by deprived
sensory experience. However, it is possible that the tissue and
cell heterogeneity in our whole barrel cortex samples may mask
or dilute changes in any particular protein (95).
This unbiased proteomics screen identi� ed changes in the

synaptic protein pro� le resulting from changes in an animal’s
somatosensory input. As expected, many postsynaptic proteins
down-regulated in deprived synapses normally would promote
spine enlargement and synaptic strength, two characteristics that
promote synaptic stability. Notably, many proteins that are less
characterized in regulating synaptic stability but that have been
implicated in actin-dependent neurite morphology or in in vivo
behavior associated with learning tasks also were down-regulated
in sensory-deprived synapses. These proteins are promising fu-
ture targets for studying synaptic stability. Furthermore, this
proteomic screen identi� ed many less-characterized synaptic
proteins that show a clear contribution to sensory development
and experience-dependent plasticity. Therefore, the present
study provides a plethora of good candidates for powerful new
techniques to monitor the synthesis and turnover of individual
genetically tagged proteins with high spatial and temporal reso-
lution (96–98). Also, overexpression or down-regulation of in-
dividual proteins will be required to dissect their functional roles.
Thus, this study provides a crucial starting point for innumerable
investigations of the molecular basis for synaptic modulation.
The raw � les and complete parameter � les will be publicly

available at http://� elds.scripps.edu/published/whisker/ upon
publication.

Materials and Methods
Animals. Eight adult FVB mice and 40 of their offspring were used in these
studies. All animal procedures were approved by Institutional Animal Care and
Use Committee of the University of California, San Diego. To ensure nearly
complete SILAM, we took a generational labeling approach: FVB female mice
were fed a 15N-rich, Spirulina-based diet for 10 wk starting at P21 (99) and
through breeding and weaning to produce “heavy” litters in which more than
95% of the protein content in the brain was 15N enriched (100). Heavy off-
spring underwent daily bilateral brushing of all whiskers from P4–P30. Off-
spring from mothers fed a normal (14N) diet for 10 wk underwent either daily
bilateral whisker brushing or trimming of all whiskers from P4–P30.

Barrel Cortex Isolation and Synaptosome Preparation. Mice were killed at P30
by retroorbital injection of ketamine/midazolam (k/m), which sufficiently
preserved brain vasculature for barrel cortex localization. The brain was
removed immediately, and the cortex was isolated and flattened and frozen
on a cold surface. The cerebellum and trigeminal ganglion were isolated and
frozen immediately. Barrel cortex was punched out of frozen, flattened
cortex (1.5-mm diameter) according to vasculature landmarks (18), caudal of
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The following primary antibodies were diluted in TBST with 1% (wt/vol)
milk: GluA1 (1:1,000; Millipore AB1504), Pcdh1 (1:500; GeneTex 114620), and
Prickle2 (1:500; GeneTex 110860).

Synaptosomes were lysed in NuPage lithium dodecyl sulfate sample buffer
(Invitrogen) with 10% (vol/vol) 2-mercaptoethanol, run on NuPage 4–12%
Novex Bis-Tris gel (Invitrogen), transferred onto a PVDF membrane (Invi-
trogen), blocked with 10% (wt/vol) milk, and incubated in primary antibody
overnight at 4 °C. Goat anti-mouse HRP (1:5,000; Cell Signaling 7076) or goat
anti-rabbit HRP (1:2,500; Bio-Rad 172–1019) secondary antibodies were ap-
plied for 45 min at room temperature before staining by chemiluminescence
(SuperSignal West Pico Chemiluminescent Substrate; Thermo Scientific). The
optical density for each band was quantified and normalized to the optical
density of the β-actin band in that lane. The average of all three normalized
trimmed samples was calculated and compared with the average of all three
normalized brushed samples for each protein.

Immunohistochemistry. A second cohort of mice (n = 4 brushed, n = 4 trim-
med) was killed at P30 and transcardially perfused with saline followed by
2% (wt/vol) paraformaldehyde. Tissue was cryoprotected in buffered 30%
(wt/vol) sucrose with 2% (wt/vol) paraformaldehyde, and the left hemi-
sphere was sectioned on a cryostat at 20-μm thickness. Sections were floated
in saline onto Trubond 380 slides (EM Sciences). Slides were processed for
antigen retrieval in citrate buffer (pH = 6) (Vector) for 6 min in a microwave.
Slides then were batch costained with the following two primary antibodies
diluted in TBST with 3% (wt/vol) BSA and 0.001% azide: SynGAP1 (1:2,000;
GeneTex 62053) and VGlut2 (1:2,000; Millipore AB2251) for 4 d at room
temperature. After thorough washing in PBS, slides were batch stained with
the following secondary antibodies: ImmPRESS anti-rabbit (peroxidase)
polymer detection kit [50% (vol/vol) in PBS-goat serum] (Vector Laborato-
ries) and goat anti-guinea pig Alexa Fluor 594 (1:2,000; Invitrogen). Sections

were imaged on a fluorescence scanner (NanoZoomer; Hamamatsu) with
transmitted light and Texas Red filter sets to image 3,3’-Diaminobenzidine
and Alexa Fluor 594, respectively. Images were background subtracted using
corpus callosum white matter as the background. The cortex staining within
the barrel field was quantified for eight separate animals using the “plot”
function in ImageJ (Fig. S1). The SynGAP1 layer I and IV plot profiles were
extracted based on cytoarchitecture and VGlut2 barrel staining, respectively,
and average values were calculated across each layer. For each tissue section,
the average SynGAP1 staining in layer I was divided by the average SynGAP1
staining in layer IV, and average staining ratios of layer I to layer IV were
calculated from four sections (four animals) per condition (n = 8 sections
total). This staining ratio quantification provides an internal normalization
so that staining in different sections can be compared. Significance was
calculated using a paired two-tailed t test (P < 0.05).

Electron Microscopy. A fresh synaptosome pellet (5 μL) prepared from whole
cortex was prepared for electron microscopy by high-pressure freezing,
freeze substitution, embedding in plastic, and sectioning at 80–100 nm
according to published methods (110). Sections were imaged at 80 keV using
a JEOL 1200 electron microscope.
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